诊断学理论与实践 ›› 2020, Vol. 19 ›› Issue (04): 375-380.doi: 10.16150/j.1671-2870.2020.04.010
安静静, 王俊祺, 肖园, 陆文丽, 李林, 王伟, 董治亚()
收稿日期:
2020-02-28
出版日期:
2020-08-25
发布日期:
2022-07-15
通讯作者:
董治亚
E-mail:dzy831@126.com
AN Jingjing, WANG Junqi, XIAO Yuan, LU Wenli, LI Lin, WANG Wei, DONG Zhiya()
Received:
2020-02-28
Online:
2020-08-25
Published:
2022-07-15
Contact:
DONG Zhiya
E-mail:dzy831@126.com
摘要:
目的: 探讨肠道菌群在小于胎龄(small for gestational age, SGA)大鼠生长追赶中的作用,并进一步研究肠道菌群介导SGA生长追赶(catch-up growth,CUG)的可能机制。方法: 用孕鼠全程半限制饮食法诱导建立4周龄的SGA大鼠模型,共收集54只大鼠幼鼠,满4周龄时,其中30只(55.6%)实现CUG,作为有CUG的SGA大鼠幼鼠组(CUG-SGA组),另24只(44.4%)无生长追赶(non-catch-up growth,NCUG)的SGA大鼠幼鼠作为NCUG-SGA组。用酶联免疫吸附试验(enzyme-linked immunosorbent assay, ELISA)法检测其血清胰岛素样生长因子1(insulin-like growth factor 1,IGF-1)水平;用16S rRNA高通量测序分析幼鼠粪便中的肠道菌群;用气相色谱-质谱法检测其肠道粪便中的短链脂肪酸(short chain fatty acid,SCFA),分析比较2组间的差异。结果: CUG-SGA组幼鼠的血IGF-1水平为(250.41±85.66) μg/L,显著高于NCUG-SGA组的(112.29±32.26) μg/L(P<0.05);CUG-SGA组幼鼠的肠道菌群多样性Simpson指数(0.99)显著高于NCUG-SGA组(0.97)(P<0.05);CUG-SGA组幼鼠肠道粪便中的SCFA各组分水平均高于NCUG组(P<0.05)。SGA幼鼠肠道粪便中的SCFA水平与11种差异表达的菌属相对丰度间存在相关性(|r|均>0.6,P<0.05),其中丙酸、丁酸、异丁酸、戊酸浓度与幼鼠的体重、身长及其血IGF-1水平间均呈显著正相关(r均>0.6,P<0.05)。结论: 肠道菌群在SGA大鼠的CUG中发挥一定作用,这种作用可能是通过菌群代谢产物SCFA调节机体能量代谢和吸收来实现的。
中图分类号:
安静静, 王俊祺, 肖园, 陆文丽, 李林, 王伟, 董治亚. 16S rRNA高通量测序分析肠道菌群对小于胎龄大鼠生长追赶的影响及其可能的机制[J]. 诊断学理论与实践, 2020, 19(04): 375-380.
AN Jingjing, WANG Junqi, XIAO Yuan, LU Wenli, LI Lin, WANG Wei, DONG Zhiya. The effect of intestinal flora on catch-up growth of small for gestational age detected by high throughput sequencing of 16S rRNA gene in rats and its possible mechanism[J]. Journal of Diagnostics Concepts & Practice, 2020, 19(04): 375-380.
表2
2组幼鼠粪便中属水平菌群相对丰度差异分析
差异菌属 | 相对丰度 | P值 | |
---|---|---|---|
NCUG-SGA组 | CUG-SGA组 | ||
乳酸杆菌属 | 25.42% | 16.50% | 0.028 |
颤螺菌属 | 3.29% | 1.12% | 0.009 |
未分类_瘤胃菌科 | 2.76% | 0.19% | 0.009 |
未分类_脱硫弧菌科 | 0.86% | 0.45% | 0.047 |
未分类_毛螺菌科 | 0.79% | 0.22% | 0.028 |
梭菌属 | 0.20% | 0.27% | 0.028 |
Odoribacter* | 0.14% | 0.01% | 0.007 |
厌氧棍状菌属 | 0.11% | 0.00% | 0.019 |
脱硫弧菌属 | 0.17% | 0.06% | 0.028 |
未分类_克里斯滕森菌科 | 0.10% | 0.03% | 0.009 |
Dehalobacterium* | 0.10% | 0.03% | 0.009 |
链球菌属 | 0.10% | 0.31% | 0.028 |
未分类_消化球菌科 | 0.06% | 0.01% | 0.009 |
嗜胆菌属 | 0.06% | <0.01% | 0.005 |
Dorea* | 0.06% | <0.01% | 0.005 |
罗斯伯里菌属 | 0.04% | 0.17% | 0.016 |
萨特菌属 | 0.03% | 0.10% | 0.047 |
未分类_链球菌科 | 0.01% | 0.02% | 0.044 |
未明确_细菌 | 0.01% | 0.04% | 0.028 |
未分类_梭菌科 | <0.01% | 0.02% | 0.055 |
丁酸弧菌 | <0.01% | 0.04% | 0.019 |
未明确_RF39* | <0.01% | 0.0% | 0.019 |
[1] | 王庆红, 杨于嘉, 魏克伦, 等. 我国小于胎龄儿现状分析[J]. 中国实用儿科杂志, 2009, 24(3):177-180. |
[2] |
Vicens-Calvet E, Espadero RM, Carrascosa A, et al. Longitudinal study of the pubertal growth spurt in children born small for gestational age without postnatal catch-up growth[J]. J Pediatr Endocrinol Metab, 2002, 15(4):381-388.
pmid: 12008684 |
[3] |
Subramanian S, Huq S, Yatsunenko T, et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children[J]. Nature, 2014, 510(7505):417-421.
doi: 10.1038/nature13421 URL |
[4] |
Blanton LV, Charbonneau MR, Salih T, et al. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children[J]. Science, 2016, 351(6275):10.
doi: 10.1126/science.351.6268.10 URL |
[5] |
Schwarzer M, Makki K, Storelli G, et al. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition[J]. Science, 2016, 351(6275):854-857.
doi: 10.1126/science.aad8588 pmid: 26912894 |
[6] | Yan J, Herzog JW, Tsang K, et al. Gut microbiota induce IGF-1 and promote bone formation and growth[J]. Proc Natl Acad Sci U S A, 2016, 113(47):E7554-E7563. |
[7] |
Cummings JH, Pomare EW, Branch WJ, et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood[J]. Gut, 1987, 28(10):1221-1227.
pmid: 3678950 |
[8] |
Campbell JM, Fahey GC Jr, Wolf BW. Selected indigestible oligosaccharides affect large bowel mass, cecal and fecal short-chain fatty acids, pH and microflora in rats[J]. J Nutr, 1997, 127(1):130-136.
pmid: 9040556 |
[9] | 丘小汕. 小于胎龄儿营养程序化与成人代谢综合征[J]. 实用儿科临床杂志, 2009, 24(7):488-490. |
[10] |
Hamady M, Knight R. Microbial community profiling for human microbiome projects: tools, techniques, and challenges[J]. Genome Res, 2009, 19(7):1141-1152.
doi: 10.1101/gr.085464.108 pmid: 19383763 |
[11] |
Ursell LK, Haiser HJ, van Treuren W, et al. The intestinal metabolome: an intersection between microbiota and host[J]. Gastroenterology, 2014, 146(6):1470-1476.
doi: 10.1053/j.gastro.2014.03.001 pmid: 24631493 |
[12] |
Flint HJ, Scott KP, Louis P, et al. The role of the gut microbiota in nutrition and health[J]. Nat Rev Gastroenterol Hepatol, 2012, 9(10):577-589.
doi: 10.1038/nrgastro.2012.156 URL |
[13] |
Liu H, Wang J, He T, et al. Butyrate: A double-edged sword for health?[J]. Adv Nutr, 2018, 9(1):21-29.
doi: 10.1093/advances/nmx009 pmid: 29438462 |
[14] |
den Besten G, van Eunen K, Groen AK, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism[J]. J Lipid Res, 2013, 54(9):2325-2340.
doi: 10.1194/jlr.R036012 pmid: 23821742 |
[15] |
Macfarlane GT, Macfarlane S. Fermentation in the human large intestine: its physiologic consequences and the potential contribution of prebiotics[J]. J Clin Gastroenterol, 2011, 45(Suppl):S120-S127.
doi: 10.1097/MCG.0b013e31822fecfe URL |
[16] | Ji X, Zhou F, Zhang Y, et al. Butyrate stimulates hepatic gluconeogenesis in mouse primary hepatocytes[J]. Exp Ther Med, 2019, 17(3):1677-1687. |
[17] |
Brown AJ, Goldsworthy SM, Barnes AA, et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids[J]. J Biol Chem, 2003, 278(13):11312-11319.
doi: 10.1074/jbc.M211609200 URL |
[18] |
Le Poul E, Loison C, Struyf S, et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation[J]. J Biol Chem, 2003, 278(28):25481-25489.
doi: 10.1074/jbc.M301403200 URL |
[19] |
Xiong Y, Miyamoto N, Shibata K, et al. Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41[J]. Proc Natl Acad Sci U S A, 2004, 101(4):1045-1050.
doi: 10.1073/pnas.2637002100 URL |
[1] | 许飞, 尹明月, 王伟, 董治亚, 陆文丽, 余熠, 王歆琼, 王俊祺, 肖园. 性早熟女童肠道菌群和抗生素耐药性的宏基因组分析[J]. 诊断学理论与实践, 2022, 21(01): 52-61. |
[2] | 李林, 安静静, 王俊祺, 王歆琼, 董治亚. 16S rRNA第二代测序技术分析特发性身材矮小儿童肠道菌群构成的特征及相关发病机制研究[J]. 诊断学理论与实践, 2021, 20(02): 149-154. |
[3] | 李惠, 冯洁, 韩立中. 高通量测序技术分析无特定病原体级实验小鼠肠道的菌群组成[J]. 诊断学理论与实践, 2020, 19(1): 55-62. |
[4] | 陈瑶瑶, 顾爱华. 氧化三甲胺与心血管疾病关系的研究进展[J]. 诊断学理论与实践, 2019, 18(2): 237-240. |
[5] | 汪婷婷, 郑乃盛, 袁向亮, 沈立松. 基于16S rRNA高通量测序技术分析小鼠实验性结肠炎肠道菌群结构特征[J]. 诊断学理论与实践, 2019, 18(03): 263-270. |
[6] | 董育玮, 赵航, 张汝玲, 陆伦根, 王兴鹏,. 实验性慢性胰腺炎大鼠骨髓间充质干细胞的检测[J]. 诊断学理论与实践, 2013, 12(03): 290-293. |
[7] | 管永靖, 陈克敏, 袁法磊, 王永亭, 任玉琦, 肖体乔, 杨国源, 凌华威,. 同步辐射微血管成像技术在动物模型中的应用初探[J]. 诊断学理论与实践, 2013, 12(01): 38-42. |
[8] | 陈晓南, 曹久妹, 王红艳, 王毅盟, 陆林, 吴方,. 环氧化酶-2在大鼠动脉血栓中的表达及意义[J]. 诊断学理论与实践, 2012, 11(06): 600-604. |
[9] | 张怡, 詹维伟, 吴永吉, 赵博, 周伟, 刘振华, 蒋为民, 郑琳,. ET技术检测高脂血症及动脉硬化大鼠腹主动脉弹性的实验研究[J]. 诊断学理论与实践, 2012, 11(06): 563-567. |
[10] | 韩宇, 汪登斌, 姜婷婷, 李志, 史曙光,. MRI表观弥散系数值评价大鼠肝纤维化干扰素INFα-2b治疗疗效的研究[J]. 诊断学理论与实践, 2011, 10(04): 335-339. |
[11] | 张先闻, 陈以平, 邓跃毅, 钟逸斐,. 高血糖对Wistar大鼠肾脏组织MMP-9mRNA、MMP-9蛋白表达的影响[J]. 诊断学理论与实践, 2009, 8(03): 292-295. |
[12] | 顾红卫, 倪兆慧, 严玉澄, 顾乐怡, 戴慧莉, 姚莒华, 袁江姿, 张敏芳,. 对糖尿病大鼠进行重复开放肾活检的初步研究[J]. 诊断学理论与实践, 2006, 5(05): 435-436. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||