诊断学理论与实践 ›› 2022, Vol. 21 ›› Issue (01): 52-61.doi: 10.16150/j.1671-2870.2022.01.011
许飞1,2, 尹明月1, 王伟1, 董治亚1, 陆文丽1, 余熠1, 王歆琼1, 王俊祺1, 肖园1()
出版日期:
2022-02-25
发布日期:
2022-02-25
通讯作者:
肖园
E-mail:xy11438@rjh.com.cn
基金资助:
XU Fei1,2, YIN Mingyue1, WANG Wei1, DONG Zhiya1, LU Wenli1, YU Yi1, WANG Xinqiong1, WANG Junqi1, XIAO Yuan1()
Online:
2022-02-25
Published:
2022-02-25
Contact:
XIAO Yuan
E-mail:xy11438@rjh.com.cn
摘要:
目的: 分析性早熟女童肠道菌群的种属及所携带的抗性基因特征。目的: 收集21例性早熟女童[包括11例中枢性性早熟(central precocious puberty,CPP)女童、10例单纯性乳房早发育(premature thelarche,PT)]及8名健康对照(normal control,NC)女童的粪便样本,采用宏基因组测序技术分析组间样本肠道菌群的特征和差异,并重点分析抗性基因丰度分布。结果: 性早熟女童的肠道菌群在门、纲、目、科、属及种水平的组成及丰度上与健康女童间均存在差异。CPP组、PT组及NC组相对丰度排名前3位的肠道菌群分别为厚壁菌门(50.03%、37.73%及67.61%)、拟杆菌门(33.00%、43.26%及10.32%)、放线菌门(4.26%、4.22%及11.16%)。与NC组相比,性早熟组(CPP+PT)的拟杆菌门 (P=0.034)丰度显著升高,厚壁菌门(P=0.006)及放线菌门(P<0.0001)丰度降低。CPP组、PT组及NC组分别发现有257种、273种和240种抗性基因。性早熟组(CPP+PT)抗性基因的种类明显多于NC组,其中四环素类及大环内酯类抗性基因丰度远高于NC组。结论: 与健康女童相比,性早熟女童的肠道菌群的分布存在明显差异,其携带抗性基因的种类明显高于健康女童,且抗性基因富集于四环素与大环内酯类,提示饮食、环境中的抗生素暴露影响了儿童肠道菌群分布,这可能与性早熟的发生相关。
中图分类号:
许飞, 尹明月, 王伟, 董治亚, 陆文丽, 余熠, 王歆琼, 王俊祺, 肖园. 性早熟女童肠道菌群和抗生素耐药性的宏基因组分析[J]. 诊断学理论与实践, 2022, 21(01): 52-61.
XU Fei, YIN Mingyue, WANG Wei, DONG Zhiya, LU Wenli, YU Yi, WANG Xinqiong, WANG Junqi, XIAO Yuan. Metagenomic analysis of gut microbiota and antibiotic resistome in girls with precocious puberty[J]. Journal of Diagnostics Concepts & Practice, 2022, 21(01): 52-61.
表1
CPP 组、PT 组以及 NC 组基线数据特征
指标 | CPP组(n=11) | PT组(n=10) | NC组(n=8) | P值 |
---|---|---|---|---|
年龄(岁) | 8.1±1.2 | 7.5±0.8 | 7.2±0.5 | 0.098 |
身高(cm) | 133.2±12.1 | 127.1±7.8 | 122.9±4.0 | 0.062 |
体重(kg) | 29.9±7.1 | 27.0±4.9 | 23.9±2.3 | 0.075 |
BMI(kg/m2) | 16.6±2.3 | 16.6±2.1 | 15.9±1.7 | 0.687 |
靶身高(cm) | 160.1±3.7 | 158.5±2.6 | 161.1±4.9 | 0.346 |
骨龄(years) | 9.8±1.5 | 8.2±2.1 | - | 0.053 |
基线LH(IU/L) | 1.9±2.0 | 0.6±1.1 | - | 0.016 |
LH峰值(IU/L) | 9.6(6.1~21.5) | 3.5(2.3~4.9) | - | <0.001 |
基线FSH(IU/L) | 3.3(2.5~5.8) | 2.6(1.3~3.0) | - | 0.324 |
FSH峰值(IU/L) | 8.5(7.4~16.7) | 13.5(9.4~17.6) | - | 0.032 |
LH/FSH | 1.1(0.8~2.1) | 0.2(0.2~0.4) | - | <0.001 |
[1] |
Eckert-Lind C, Busch AS, Petersen JH, et al. Worldwide Secular Trends in Age at Pubertal Onset Assessed by Breast Development Among Girls: A Systematic Review and Meta-analysis[J]. JAMA Pediatr, 2020, 174(4):e195881.
doi: 10.1001/jamapediatrics.2019.5881 URL |
[2] | Lopez J, Deoraj A. Effect of Gut Microbiome on Obesity Can Influence Precocious Puberty (CPP)[C]. 2015. |
[3] |
Dalby MJ, Ross AW, Walker AW, et al. Dietary Uncoupling of Gut Microbiota and Energy Harvesting from Obesity and Glucose Tolerance in Mice[J]. Cell Rep, 2017, 21(6):1521-1533.
doi: 10.1016/j.celrep.2017.10.056 URL |
[4] |
Heras V, Castellano JM, Fernandois D, et al. Central Ceramide Signaling Mediates Obesity-Induced Precocious Puberty[J]. Cell Metab, 2020, 32(6):951-966,e8.
doi: 10.1016/j.cmet.2020.10.001 URL |
[5] |
Pruden A, Pei R, Storteboom H, et al. Antibiotic resistance genes as emerging contaminants: studies in northern Colorado[J]. Environ Sci Technol, 2006, 40(23):7445-7450.
pmid: 17181002 |
[6] |
Fassarella M, Blaak EE, Penders J, et al. Gut microbiome stability and resilience: elucidating the response to perturbations in order to modulate gut health[J]. Gut, 2021, 70(3):595-605.
doi: 10.1136/gutjnl-2020-321747 pmid: 33051190 |
[7] |
Cox LM, Yamanishi S, Sohn J, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences[J]. Cell, 2014, 158(4):705-721.
doi: 10.1016/j.cell.2014.05.052 URL |
[8] |
Wang H, Wang N, Wang B, et al. Antibiotics detected in urines and adipogenesis in school children[J]. Environ Int, 2016, 89-90:204-211.
doi: 10.1016/j.envint.2016.02.005 URL |
[9] | White JR, Nagarajan N, Pop M. Statistical methods for detecting differentially abundant features in clinical metagenomic samples[J]. PLoS Comput Biol, 2009, 5(4):e1000352. |
[10] |
McArthur AG, Waglechner N, Nizam F, et al. The comprehensive antibiotic resistance database[J]. Antimicrob Agents Chemother, 2013, 57(7):3348-3357.
doi: 10.1128/AAC.00419-13 pmid: 23650175 |
[11] | Alcock BP, Raphenya AR, Lau TTY, et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database[J]. Nucleic Acids Res, 2020, 48(D1):D517-D525. |
[12] |
Riva A, Borgo F, Lassandro C, et al. Pediatric obesity is associated with an altered gut microbiota and discordant shifts in Firmicutes populations[J]. Environ Microbiol, 2017, 19(1):95-105.
doi: 10.1111/1462-2920.13463 URL |
[13] |
Liu R, Hong J, Xu X, et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention[J]. Nat Med, 2017, 23(7):859-868.
doi: 10.1038/nm.4358 URL |
[14] |
Dong G, Zhang J, Yang Z, et al. The Association of Gut Microbiota With Idiopathic Central Precocious Puberty in Girls[J]. Front Endocrinol (Lausanne), 2020, 10:941.
doi: 10.3389/fendo.2019.00941 URL |
[15] | 周莎莎, 刘春杰, 李嫔. 肠道微生物及代谢产物对中枢性性早熟的影响[C]. 2020.第十九届全国儿科内分泌代谢遗传病会议 |
Zhou S S, Liu C J, Li B. Effects of intestinal microorganisms and metabolites on central precocious puberty[C]. 2020. The 19th National Conference on Pediatric Endocrine Metabolic Genetic Diseases. | |
[16] |
Yuan X, Chen R, Zhang Y, et al. Gut microbiota: effect of pubertal status[J]. BMC Microbiol, 2020, 20(1):334.
doi: 10.1186/s12866-020-02021-0 pmid: 33143658 |
[17] |
Hollister EB, Riehle K, Luna RA, et al. Structure and function of the healthy pre-adolescent pediatric gut microbiome[J]. Microbiome, 2015, 3:36.
doi: 10.1186/s40168-015-0101-x pmid: 26306392 |
[18] |
Wang M, Zhang Y, Miller D, et al. Microbial Reconstitution Reverses Early Female Puberty Induced by Maternal High-fat Diet During Lactation[J]. Endocrinology, 2020, 161(2):bqz041.
doi: 10.1210/endocr/bqz041 URL |
[19] | Li Y, Shen L, Huang C, et al. Altered nitric oxide induced by gut microbiota reveals the connection between central precocious puberty and obesity[J]. Clin Transl Med, 2021, 11(2):e299. |
[20] |
Liu YX, Qin Y, Chen T, et al. A practical guide to amplicon and metagenomic analysis of microbiome data[J]. Protein Cell, 2021, 12(5):315-330.
doi: 10.1007/s13238-020-00724-8 URL |
[21] |
Boolchandani M, D'Souza AW, Dantas G. Sequencing-based methods and resources to study antimicrobial resistance[J]. Nat Rev Genet, 2019, 20(6):356-370.
doi: 10.1038/s41576-019-0108-4 pmid: 30886350 |
[22] |
Feng J, Li B, Jiang X, et al. Antibiotic resistome in a large-scale healthy human gut microbiota deciphered by metagenomic and network analyses[J]. Environ Microbiol, 2018, 20(1):355-368.
doi: 10.1111/1462-2920.14009 pmid: 29194931 |
[23] | Milanović V, Osimani A, Aquilanti L, et al. Occurrence of antibiotic resistance genes in the fecal DNA of healthy omnivores, ovo-lacto vegetarians and vegans[J/OL]. Mol Nutr Food Res, 2017-06-09 [2021-12-12]. https://pubmed.ncbi.nlm.nih.gov/28464483/. |
[24] |
Korpela K, de Vos WM. Antibiotic use in childhood alters the gut microbiota and predisposes to overweight[J]. Microb Cell, 2016, 3(7):296-298.
doi: 10.15698/mic2016.07.514 pmid: 28357367 |
[25] |
Gosalbes MJ, Vallès Y, Jiménez-Hernández N, et al. High frequencies of antibiotic resistance genes in infants′ meconium and early fecal samples[J]. J Dev Orig Health Dis, 2016, 7(1):35-44.
doi: 10.1017/S2040174415001506 URL |
[26] |
Lu N, Hu Y, Zhu L, et al. DNA microarray analysis reveals that antibiotic resistance-gene diversity in human gut microbiota is age related[J]. Sci Rep, 2014, 4:4302.
doi: 10.1038/srep04302 URL |
[27] | 隋倩雯, 张俊亚, 魏源送, 等. 畜禽养殖过程抗生素使用与耐药病原菌及其抗性基因赋存的研究进展[J]. 生态毒理学报, 2015, 10(5):20-34. |
Sui Q W, Zhang J Y, Wei Y S, et al. Research Progress on antibiotic use, drug resistant pathogens and occurrence of resistance genes in livestock and poultry breeding[J]. J ecotoxicol, 2015, 10(5):20-34. | |
[28] |
Dibner JJ, Richards JD. Antibiotic growth promoters in agriculture: history and mode of action[J]. Poult Sci, 2005, 84(4):634-643.
doi: 10.1093/ps/84.4.634 URL |
[29] |
Castanon JI. History of the use of antibiotic as growth promoters in European poultry feeds[J]. Poult Sci, 2007, 86(11):2466-2471.
doi: 10.3382/ps.2007-00249 URL |
[30] |
Gough EK, Moodie EE, Prendergast AJ, et al. The impact of antibiotics on growth in children in low and middle income countries: systematic review and meta-analysis of randomised controlled trials[J]. BMJ, 2014, 348:g2267.
doi: 10.1136/bmj.g2267 URL |
[31] |
Niewold TA. The nonantibiotic anti-inflammatory effect of antimicrobial growth promoters, the real mode of action? A hypothesis[J]. Poult Sci, 2007, 86(4):605-609.
doi: 10.1093/ps/86.4.605 URL |
[32] |
Naik OA, Shashidhar R, Rath D, et al. Characterization of multiple antibiotic resistance of culturable microorganisms and metagenomic analysis of total microbial diversity of marine fish sold in retail shops in Mumbai, India[J]. Environ Sci Pollut Res Int, 2018, 25(7):6228-6239.
doi: 10.1007/s11356-017-0945-7 URL |
[33] |
Danko D, Bezdan D, Afshin EE, et al. A global metagenomic map of urban microbiomes and antimicrobial resistance[J]. Cell, 2021, 184(13):3376-3393,e17.
doi: 10.1016/j.cell.2021.05.002 URL |
[1] | 李林, 安静静, 王俊祺, 王歆琼, 董治亚. 16S rRNA第二代测序技术分析特发性身材矮小儿童肠道菌群构成的特征及相关发病机制研究[J]. 诊断学理论与实践, 2021, 20(02): 149-154. |
[2] | 李惠, 冯洁, 韩立中. 高通量测序技术分析无特定病原体级实验小鼠肠道的菌群组成[J]. 诊断学理论与实践, 2020, 19(1): 55-62. |
[3] | 马晓宇, 杨媛艳, 陆文丽, 倪继红, 王俊琪, 陈烨, 秦雪艳, 董治亚, 王伟. 晨尿促性腺激素全定量测定在前瞻性鉴别女童中枢性性早熟进展类型中的应用价值[J]. 诊断学理论与实践, 2020, 19(05): 516-520. |
[4] | 安静静, 王俊祺, 肖园, 陆文丽, 李林, 王伟, 董治亚. 16S rRNA高通量测序分析肠道菌群对小于胎龄大鼠生长追赶的影响及其可能的机制[J]. 诊断学理论与实践, 2020, 19(04): 375-380. |
[5] | 陈瑶瑶, 顾爱华. 氧化三甲胺与心血管疾病关系的研究进展[J]. 诊断学理论与实践, 2019, 18(2): 237-240. |
[6] | 朱晓雷, 陈璐, 陆文丽, 刘燕, 严福华, 王伟, 董治亚. 474例中枢性性早熟女童不同年龄段垂体MRI影像学异常比例分析[J]. 诊断学理论与实践, 2019, 18(03): 286-290. |
[7] | 汪婷婷, 郑乃盛, 袁向亮, 沈立松. 基于16S rRNA高通量测序技术分析小鼠实验性结肠炎肠道菌群结构特征[J]. 诊断学理论与实践, 2019, 18(03): 263-270. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||