诊断学理论与实践 ›› 2020, Vol. 19 ›› Issue (03): 232-237.doi: 10.16150/j.1671-2870.2020.03.006
收稿日期:
2019-12-03
出版日期:
2020-06-25
发布日期:
2020-06-25
通讯作者:
岳华,章振林
E-mail:zhangzl@sjtu.edu.cn;yueyinglonghua@163.com
基金资助:
LIU Li, WEI Zhe, LIN Xiaoyun, YUE Hua(), ZHANG Zhenlin()
Received:
2019-12-03
Online:
2020-06-25
Published:
2020-06-25
Contact:
YUE Hua,ZHANG Zhenlin
E-mail:zhangzl@sjtu.edu.cn;yueyinglonghua@163.com
摘要:
目的: 观察2例散发的皮肤骨骼低磷综合征(cutaneous skeletal hypophosphatemia syndrome,CSHS)患者的临床特征及影像学表现,并进行致病基因突变检测和药物治疗干预,同时复习相关文献进行综合分析。方法: 收集2例CSHS患者的详细病史以及体格检查、血液生化检测和影像学检查等结果,并采集患者的外周血和皮损处皮肤组织样本,分别抽提DNA进行KRAS、NRAS、HRAS基因Sanger测序。结果: 2例CSHS患者均表现为全身疼痛伴进行性加重的活动障碍,脊柱侧弯、多处骨折,并伴有腰臀部黑素痣;血生化检测显示,其血磷水平降低,分别为0.44 mmol/L和0.46 mmol/L,碱性磷酸酶(alkaline phosphatase,ALP)升高(157 U/L和277 U/L),成纤维生长因子23(fibroblast growth factor 23,FGF-23)水平增高(57.0 ng/L和118.5 ng/L);骨密度检测结果提示,骨密度显著降低。给予患者中性磷溶液和骨化三醇治疗后,其临床症状明显改善。2例患者的外周血及皮损处皮肤组织DNA中均未检测到已知基因突变。结论: CSHS是临床罕见的代谢性骨病,其发病机制目前尚不明确,诊断主要依靠临床表现、生化检测、特征性骨软化影像学表现,基因检测出RAS突变即可确诊。
中图分类号:
刘丽, 魏哲, 林小云, 岳华, 章振林. 皮肤骨骼低磷综合征2例患者临床研究并文献复习[J]. 诊断学理论与实践, 2020, 19(03): 232-237.
LIU Li, WEI Zhe, LIN Xiaoyun, YUE Hua, ZHANG Zhenlin. The clinical investigation of two cases of cutaneous skeletal hypophosphatemia syndrome and review of literature[J]. Journal of Diagnostics Concepts & Practice, 2020, 19(03): 232-237.
表1
2例CSHS患者的血液生化指标检测结果
指标 | 例1 | 例2 | 正常参考范围 |
---|---|---|---|
钙(mmol/L) | 2.31 | 2.43 | 2.25~2.75 |
磷(mmol/L) | 0.44 | 0.46 | 0.90~1.50 |
ALP(U/L) | 157 | 277 | 15~112 |
β-CTX(ng/L) | 426.50 | 445.00 | 25~29岁男性,415.00~551.00 |
45~49岁女性,221.00~301.00 | |||
骨钙素(μg/L) | 22.18 | 17.97 | 25~29岁男性17.19~19.77 |
45~49岁女性,12.88~16.79 | |||
25-羟维生素D(μg/L) | 24.84 | 22.71 | >30.00 |
PTH(ng/L) | 59.30 | 48.34 | 15.00~65.00 |
iFGF-23(ng/L) | 57.0 | 118.5 | 33.9~51.8 |
[1] |
Lim YH, Ovejero D, Sugarman JS, et al. Multilineage somatic activating mutations in HRAS and NRAS cause mosaic cutaneous and skeletal lesions, elevated FGF23 and hypophosphatemia[J]. Hum Mol Genet, 2014, 23(2):397-407.
doi: 10.1093/hmg/ddt429 URL |
[2] | Aschinberg LC, Solomon LM, Zeis PM, et al. Vitamin D-resistant rickets associated with epidermal nevus syndrome: Demonstration of a phosphaturic substance in the dermal lesions[J]. J Pediatr, 1977, 91(1):56-60. |
[3] |
Ovejero D, Lim YH, Boyce AM, et al. Cutaneous skeletal hypophosphatemia syndrome: Clinical spectrum, natural history, and treatment[J]. Osteoporos Int, 2016, 27(12): 3615-3626.
pmid: 27497815 |
[4] | Hu WW, Zhang Z, He JW, et al. Establishing reference intervals for bone turnover markers in the healthy Shanghai population and the relationship with bone mineral density in postmenopausal women[J]. Int J Endocrinol, 2013, 2013:513925. |
[5] |
Li SS, Gu JM, Yu WJ, et al. Seven novel and six de novo PHEX gene mutations in patients with hypophosphatemic rickets[J]. Int J Mol Med, 2016, 38(6):1703-1714.
doi: 10.3892/ijmm.2016.2796 URL |
[6] |
Happle R. The McCune-albright syndrome: a lethal gene surviving by mosaicism[J]. Clin Genet, 1986, 29(4):321-324.
pmid: 3720010 |
[7] |
Rieger E, Kofler R, Borkenstein M, et al. Melanotic macu-les following Blaschko's lines in McCune-Albright syndrome[J]. Br J Dermatol, 1994, 130(2):215-220.
doi: 10.1111/j.1365-2133.1994.tb02903.x URL |
[8] |
Molho-Pessach V, Schaffer JV. Blaschko lines and other patterns of cutaneous mosaicism[J]. Clin Dermatol, 2011, 29(2):205-225.
doi: 10.1016/j.clindermatol.2010.09.012 pmid: 21396561 |
[9] | 李欢, 王磊. Blaschko线相关疾病的研究进展[J]. 天津医药, 2013, 41(1):89-91. |
[10] |
Lim YH, Ovejero D, Derrick KM, et al. Cutaneous skeletal hypophosphatemia syndrome (CSHS) is a multilineage somatic mosaic RASopathy[J]. J Am Acad Dermatol, 2016, 75(2):420-427.
doi: 10.1016/j.jaad.2015.11.012 URL |
[11] |
Groesser L, Herschberger E, Ruetten A, et al. Postzygotic HRAS and KRAS mutations cause nevus sebaceous and Schimmelpenning syndrome[J]. Nat Genet, 2012, 44(7): 783-787.
doi: 10.1038/ng.2316 pmid: 22683711 |
[12] |
Levinsohn JL, Tian LC, Boyden LM, et al. Whole-exome sequencing reveals somatic mutations in HRAS and KRAS, which cause nevus sebaceus[J]. J Invest Dermatol, 2013, 133(3):827-830.
doi: S0022-202X(15)36165-0 pmid: 23096712 |
[13] |
Charbel C, Fontaine RH, Malouf GG, et al. NRAS mutation is the sole recurrent somatic mutation in large congenital melanocytic nevi[J]. J Invest Dermatol, 2014, 134(4):1067-1074.
doi: 10.1038/jid.2013.429 URL |
[14] |
Okumura A, Lee T, Ikeno M, et al. A severe form of epidermal nevus syndrome associated with brainstem and cerebellar malformations and neonatal medulloblastoma[J]. Brain Dev, 2012, 34(10): 881-885.
doi: 10.1016/j.braindev.2012.03.003 URL |
[15] |
Seifert F, Jäger T, Ring J, et al. Concurrence of linear epidermal nevus and nevus flammeus in a man with optic pathway glioma: coincidence or phacomatosis?[J]. Int J Dermatol, 2012, 51(5):592-593.
doi: 10.1111/j.1365-4632.2011.05034.x URL |
[16] |
Hoon Jung J, Chan Kim Y, Joon Park H, et al. Becker's nevus with ipsilateral breast hypoplasia: Improvement with spironolactone[J]. J Dermatol, 2003, 30(2):154-156.
pmid: 12692385 |
[17] | Calzavara Pinton P, Carlino A, Manganoni AM, et al. Epidermal nevus syndrome with multiple vascular hamartomas and malformations[J]. G Ital Dermatol Venereol, 1990, 125(6):251-254. |
[18] |
Kawachi R, Kanekura T, Higashi Y, et al. Epidermal nevus syndrome with hemangioma simplex[J]. J Dermatol, 1997, 24(1):66-67.
pmid: 9046747 |
[19] |
Shimada T, Kakitani M, Yamazaki Y, et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism[J]. J Clin Invest, 2004, 113(4):561-568.
doi: 10.1172/JCI200419081 URL |
[20] |
Bai X, Miao D, Li J, et al. Transgenic mice overexpres-sing human fibroblast growth factor 23 (R176Q) delineate a putative role for parathyroid hormone in renal phosphate wasting disorders[J]. Endocrinology, 2004, 145(11): 5269-5279.
doi: 10.1210/en.2004-0233 URL |
[21] | Silver J, Naveh-Many T. FGF23 and the parathyroid[J]. Adv Exp Med Biol, 2012, 728:92-99. |
[22] |
Groesser L, Herschberger E, Sagrera A, et al. Phacomatosis pigmentokeratotica is caused by a postzygotic HRAS mutation in a multipotent progenitor cell[J]. J Invest Dermatol, 2013, 133(8):1998-2003.
doi: 10.1038/jid.2013.24 pmid: 23337891 |
[23] | Park PG, Park E, Hyun HS, et al. Cutaneous skeletal hypophosphatemia syndrome in association with a mosaic HRAS mutation[J]. Ann Clin Lab Sci, 2018, 48(5):665-669. |
[24] |
Hafner C, López-Knowles E, Luis NM, et al. Oncogenic PIK3CA mutations occur in epidermal nevi and seborrheic keratoses with a characteristic mutation pattern[J]. Proc Natl Acad Sci U S A, 2007, 104(33):13450-13454.
doi: 10.1073/pnas.0705218104 URL |
[25] |
Wang SM, Hsieh YJ, Chang KM, et al. Schimmelpenning syndrome: a case report and literature review[J]. Pediatr Neonatol, 2014, 55(6):487-490.
doi: 10.1016/j.pedneo.2012.12.017 URL |
[26] |
Collins MT, Singer FR, Eugster E. McCune-Albright syndrome and the extraskeletal manifestations of fibrous dysplasia[J]. Orphanet J Rare Dis, 2012, 7( Suppl 1):S4.
doi: 10.1186/1750-1172-7-S1-S4 URL |
[27] |
Lee SE, Lee EH, Park H, et al. The diagnostic utility of the GNAS mutation in patients with fibrous dysplasia: Meta-analysis of 168 sporadic cases[J]. Hum Pathol, 2012, 43(8):1234-1242.
doi: 10.1016/j.humpath.2011.09.012 URL |
[28] |
Narazaki R, Ihara K, Namba N, et al. Linear nevus sebaceous syndrome with hypophosphatemic rickets with elevated FGF-23[J]. Pediatr Nephrol, 2012, 27(5):861-863.
doi: 10.1007/s00467-011-2086-4 pmid: 22205508 |
[29] |
Ivker R, Resnick SD, Skidmore RA. Hypophosphatemic vitamin D-resistant rickets, precocious puberty, and the epidermal nevus syndrome[J]. Arch Dermatol, 1997, 133(12):1557-1561.
pmid: 9420541 |
[30] | Tsang M, Dawid IB. Promotion and attenuation of FGF signaling through the Ras-MAPK pathway[J]. Sci STKE, 2004, 2004(228):17. |
[31] |
Chappell WH, Steelman LS, Long JM, et al. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: Rationale and importance to inhibiting these pathways in human health[J]. Oncotarget, 2011, 2(3):135-164.
doi: 10.18632/oncotarget.240 pmid: 21411864 |
[32] |
Rowinsky EK, Windle JJ, von Hoff DD. Ras protein farnesyltransferase: A strategic target for anticancer thera-peutic development[J]. J Clin Oncol, 1999, 17(11):3631-3652.
pmid: 10550163 |
[33] |
Collins M. Burosumab: At long last, an effective treatment for FGF23-associated hypophosphatemia[J]. J Bone Miner Res, 2018, 33(8):1381-1382.
doi: 10.1002/jbmr.3544 URL |
[34] |
Carpenter TO, Imel EA, Ruppe MD, et al. Randomized trial of the anti-FGF23 antibody KRN23 in X-linked hypophosphatemia[J]. J Clin Invest, 2014, 124(4):1587-1597.
doi: 10.1172/JCI72829 pmid: 24569459 |
[35] |
Imel EA, Zhang X, Ruppe MD, et al. Prolonged correction of serum phosphorus in adults with X-Linked hypophosphatemia using monthly doses of KRN23[J]. J Clin Endocrinol Metab, 2015, 100(7):2565-2673.
doi: 10.1210/jc.2015-1551 URL |
[1] | 中华医学会内分泌学分会. 新型冠状病毒肺炎疫情下骨质疏松症管理专家建议[J]. 诊断学理论与实践, 2022, 21(02): 133-135. |
[2] | 杜艳萍, 程群. 骨质疏松症使用甲状旁腺激素类似物和双膦酸盐序贯治疗的机制及策略[J]. 诊断学理论与实践, 2020, 19(03): 219-224. |
[3] | 汪纯. 原发性骨质疏松症发病及诊治的现状和展望[J]. 诊断学理论与实践, 2020, 19(03): 209-213. |
[4] | 游利. 重视骨转换指标的临床应用及评估[J]. 诊断学理论与实践, 2020, 19(03): 214-218. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||