诊断学理论与实践 ›› 2020, Vol. 19 ›› Issue (03): 219-224.doi: 10.16150/j.1671-2870.2020.03.003
杜艳萍, 程群
收稿日期:
2020-02-28
出版日期:
2020-06-25
发布日期:
2020-06-25
Received:
2020-02-28
Online:
2020-06-25
Published:
2020-06-25
中图分类号:
杜艳萍, 程群. 骨质疏松症使用甲状旁腺激素类似物和双膦酸盐序贯治疗的机制及策略[J]. 诊断学理论与实践, 2020, 19(03): 219-224.
表1
常用抗骨质疏松药物的分类、机制和效果
药物分类 | 具体药物 | 作用机制 | 对BMD作用 | 对骨折作用 | 禁忌证 | 不良反应 |
---|---|---|---|---|---|---|
抗骨吸收药物 | ||||||
双膦酸盐 | 包括阿仑膦酸钠、利塞膦酸钠、依替膦酸二钠、唑来膦酸钠、伊班膦酸钠 | 抑制法尼基焦磷酸的合成,从而抑制破骨细胞活性,减少破骨细胞数目,骨吸收减少 | 腰椎BMD↑,髋部BMD↑,骨代谢↓ | 椎体骨折↓,非椎体骨折↓,髋部骨折↓(除依替膦酸二钠和伊班膦酸钠) | 肌酐清除率不应﹤35 mL/min;胃食管反流(口服) | 过度骨抑制;胃肠道反应(口服) |
选择性雌激 素受体调 节剂 | 雷洛昔芬 | 选择性在骨组织中与雌激素受体结合,发挥类雌激素作用,减少破骨细胞的生成和活性 | 腰椎BMD↑,骨代谢↓ | 椎体骨折↓ | 静脉栓塞;肌酐清除率﹤35 mL/min(仅用于绝经后女性) | 潮热;下肢痉挛;静脉栓塞 |
降钙素 | 包括鲑鱼降钙素、鳗鱼降钙素 | 为钙调节激素,抑制破骨细胞活性,减少破骨细胞数目 | 腰椎BMD↑,髋部BMD↑ | 椎体骨折↓,非椎体骨折(鲑鱼降钙素)↓ | 降钙素过敏 | 面部潮红、恶心 |
RANKL抑 制剂 | 迪诺塞麦(国内已完成Ⅲ期临床试验) | 为特异性RANKL完全人源化单抗,抑制RANKL与其受体RANK结合,减少破骨细胞形成、功能和存活 | 腰椎BMD↑,髋部BMD↑,骨代谢↓ | 椎体骨折↓,非椎体骨折↓,髋部骨折↓ | 低钙血症 | 低血钙、炎症感染;过度骨抑制;停药后BMD“断崖式”下降 |
促骨形成药物 | 包括PTHa、特立帕肽 | rhPTH 1-34,刺激成骨细胞活性 | 腰椎BMD↑,髋部BMD↑,骨代谢↑ | 椎体骨折↓,非椎体骨折↓ | 畸形性骨炎;骨骼疾病放射治疗史;肿瘤骨转移;高钙血症;小于18岁的青少年;肌酐清除率﹤35 mL/min | 高血钙;肌肉酸痛;高尿酸血症;头痛;终身治疗时间不超过2年;停药后,骨丢失加快 |
[1] | 中华医学会骨质疏松和骨矿盐疾病分会. 原发性骨质疏松症诊疗指南(2017)[J]. 中华内分泌代谢杂志, 2017, 33(10):890-913. |
[2] | Hanley DA, McClung MR, Davison KS, et al. Western Osteoporosis Alliance Clinical Practice Series: Evaluating the balance of benefits and risks of long-term osteoporosis therapies[J]. Am J Med, 2017, 130(7):862,e1-e7. |
[3] | Sims NA, Martin TJ. Coupling signals between the osteoclast and osteoblast: How are messages transmitted between these temporary visitors to the bone surface?[J]. Front Endocrinol (Lausanne), 2015, 6:41. |
[4] |
Kim BJ, Koh JM. Coupling factors involved in preserving bone balance[J]. Cell Mol Life Sci, 2019, 76(7):1243-1253.
doi: 10.1007/s00018-018-2981-y URL |
[5] |
Pogada P, Priemel M, Rueger JM, et al. Bone remodeling: New aspects of a key process that controls skeletal maintenance and repair[J]. Osteoporos Int, 2005, 16(Suppl 2):S18-S24.
doi: 10.1007/s00198-004-1787-y URL |
[6] |
Vahle JL, Long GG, Sandusky G, et al. Bone neoplasms in F344 rats given teriparatide [rhPTH(1-34)] are dependent on duration of treatment and dose[J]. Toxicol Pathol, 2004, 32(4):426-438.
pmid: 15204966 |
[7] |
Andrews EB, Gilsenan AW, Midkiff K, et al. The US Postmarketing Surveillance Study of adult osteosarcoma and teriparatide: Study design and findings from the first 7 years[J]. J Bone Miner Res, 2012, 27(12):2429-2437.
doi: 10.1002/jbmr.1768 URL |
[8] |
Black DM, Bilezikian JP, Ensrud KE, et al. One year of alendronate after one year of parathyroid hormone (1-84) for osteoporosis[J]. N Engl J Med, 2005, 353(6):555-565.
doi: 10.1056/NEJMoa050336 URL |
[9] |
Neer RM, Arnaud CD, Zanchetta JR, et al. Effect of parathyroid hormone (1-34) on fractures and bone mine-ral density in postmenopausal women with osteoporosis[J]. N Engl J Med, 2001, 344(19):1434-1441.
doi: 10.1056/NEJM200105103441904 URL |
[10] |
Dempster DW, Lambing CL, Kostenuik PJ, et al. Role of RANK ligand and denosumab, a targeted RANK ligand inhibitor, in bone health and osteoporosis: A review of preclinical and clinical data[J]. Clin Ther, 2012, 34(3):521-536.
doi: 10.1016/j.clinthera.2012.02.002 pmid: 22440513 |
[11] |
Lindsay R, Scheele WH, Neer R, et al. Sustained vertebral fracture risk reduction after withdrawal of teriparatide in postmenopausal women with osteoporosis[J]. Arch Intern Med, 2004, 164(18):2024-2030.
pmid: 15477438 |
[12] |
Bone HG, Cosman F, Miller PD, et al. ACTIVExtend: 24 months of alendronate after 18 months of abaloparatide or placebo for postmenopausal osteoporosis[J]. J Clin Endocrinol Metab, 2018, 103(8):2949-2957.
doi: 10.1210/jc.2018-00163 URL |
[13] |
McClung MR, Brown JP, Diez-Perez A, et al. Effects of 24 months of treatment with romosozumab followed by 12 months of denosumab or placebo in postmenopausal women with low bone mineral density: A randomized, double-blind, phase 2, parallel group study[J]. J Bone Miner Res, 2018, 33(8):1397-1406.
doi: 10.1002/jbmr.3452 URL |
[14] |
Adler RA, El-Hajj Fuleihan G, Bauer DC, et al. Mana-ging osteoporosis in patients on long-term bisphosphonate treatment: report of a task force of the American Society for bone and mineral research[J]. J Bone Miner Res, 2016, 31(10):1910.
doi: 10.1002/jbmr.2918 URL |
[15] |
Khan M, Cheung AM, Khan AA. Drug-related adverse events of osteoporosis therapy[J]. Endocrinol Metab Clin North Am, 2017, 46(1):181-192.
doi: 10.1016/j.ecl.2016.09.009 URL |
[16] |
Dempster DW, Zhou H, Recker RR, et al. A longitudinal study of skeletal histomorphometry at 6 and 24 months across four bone envelopes in postmenopausal women with osteoporosis receiving teriparatide or zoledronic acid in the SHOTZ trial[J]. J Bone Miner Res, 2016, 31(7):1429-1439.
doi: 10.1002/jbmr.2804 pmid: 26841258 |
[17] | Rittmaster RS, Bolognese M, Ettinger MP, et al. Enhancement of bone mass in osteoporotic women with parathyroid hormone followed by alendronate[J]. J Clin Endocrinol Metab, 2000, 85(6):2129-2134. |
[18] |
Kurland ES, Heller SL, Diamond B, et al. The importance of bisphosphonate therapy in maintaining bone mass in men after therapy with teriparatide [human parathyroid hormone(1-34)][J]. Osteoporos Int, 2004, 15(12):992-997.
pmid: 15175844 |
[19] |
Cosman F, Miller PD, Williams GC, et al. Eighteen months of treatment with subcutaneous abaloparatide followed by 6 months of treatment with alendronate in postmenopausal women with osteoporosis: results of the ACTIVExtend trial[J]. Mayo Clin Proc, 2017, 92(2):200-210.
doi: 10.1016/j.mayocp.2016.10.009 URL |
[20] |
Eastell R, Nickelsen T, Marin F, et al. Sequential treatment of severe postmenopausal osteoporosis after teriparatide: final results of the randomized, controlled European Study of Forsteo(EUROFORS)[J]. J Bone Miner Res, 2009, 24(4):726-736.
doi: 10.1359/jbmr.081215 URL |
[21] |
Ebina K, Hashimoto J, Kashii M, et al. The effects of switching daily teriparatide to oral bisphosphonates or denosumab in patients with primary osteoporosis[J]. J Bone Miner Metab, 2017, 35(1):91-98.
doi: 10.1007/s00774-015-0731-x URL |
[22] |
Leder BZ, Tsai JN, Uihlein AV, et al. Denosumab and teriparatide transitions in postmenopausal osteoporosis (the data-switch study): extension of a randomised controlled trial[J]. Lancet, 2015, 386(9999):1147-1155.
doi: 10.1016/S0140-6736(15)61120-5 URL |
[23] |
Bonafede MM, Shi N, Bower AG, et al. Teriparatide treatment patterns in osteoporosis and subsequent fracture events: A US claims analysis[J]. Osteoporos Int, 2015, 26(3):1203-1212.
doi: 10.1007/s00198-014-2971-3 pmid: 25567774 |
[24] |
Nancollas GH, Tang R, Phipps RJ, et al. Novel insights into actions of bisphosphonates on bone: Differences in interactions with hydroxyapatite[J]. Bone, 2006, 38(5):617-627.
pmid: 16046206 |
[25] |
Leder BZ. Optimizing sequential and combined anabolic and antiresorptive osteoporosis therapy[J]. JBMR Plus, 2018, 2(2):62-68.
doi: 10.1002/jbm4.10041 URL |
[26] |
Ettinger B, San Martin J, Crans G, et al. Differential effects of teriparatide on BMD after treatment with raloxi-fene or alendronate[J]. J Bone Miner Res, 2004, 19(5):745-751.
pmid: 15068497 |
[27] |
Obermayer-Pietsch BM, Marin F, McCloskey EV, et al. Effects of two years of daily teriparatide treatment on BMD in postmenopausal women with severe osteoporosis with and without prior antiresorptive treatment[J]. J Bone Miner Res, 2008, 23(10):1591-1600.
doi: 10.1359/jbmr.080506 pmid: 18505369 |
[28] |
Boonen S, Marin F, Obermayer-Pietsch B, et al. Effects of previous antiresorptive therapy on the bone mineral density response to two years of teriparatide treatment in postmenopausal women with osteoporosis[J]. J Clin Endocrinol Metab, 2008, 93(3):852-860.
doi: 10.1210/jc.2007-0711 URL |
[29] |
Cosman F, Keaveny TM, Kopperdahl D, et al. Hip and spine strength effects of adding versus switching to teriparatide in postmenopausal women with osteoporosis treated with prior alendronate or raloxifene[J]. J Bone Miner Res, 2013, 28(6):1328-1336.
doi: 10.1002/jbmr.1853 URL |
[30] |
Eiken P, Vestergaard P. Treatment of osteoporosis after alendronate or risedronate[J]. Osteoporos Int, 2016, 27(1):1-12.
doi: 10.1007/s00198-015-3334-4 pmid: 26438307 |
[31] |
Cosman F. Anabolic and antiresorptive therapy for osteoporosis: combination and sequential approaches[J]. Curr Osteoporos Rep, 2014, 12(4):385-395.
doi: 10.1007/s11914-014-0237-9 URL |
[32] |
Miller PD, Delmtas PD, Lindsay R, et al. Early responsiveness of women with osteoporosis to teriparatide after therapy with alendronate or risedronate[J]. J Clin Endocrinol Metab, 2008, 93(10):3785-3793.
doi: 10.1210/jc.2008-0353 URL |
[33] |
Cosman F, Nieves JW, Zion M, et al. Effect of prior and ongoing raloxifene therapy on response to PTH and maintenance of BMD after PTH therapy[J]. Osteoporos Int, 2008, 19(4):529-535.
doi: 10.1007/s00198-007-0475-0 pmid: 17929072 |
[34] |
Cosman F, Wermers RA, Recknor C, et al. Effects of teriparatide in postmenopausal women with osteoporosis on prior alendronate or raloxifene: Differences between stopping and continuing the antiresorptive agent[J]. J Clin Endocrinol Metab, 2009, 94(10):3772-3780.
doi: 10.1210/jc.2008-2719 URL |
[35] |
Geusens P, Marin F, Kendler DL, et al. Effects of teriparatide compared with risedronate on the risk of fractures in subgroups of postmenopausal women with severe osteoporosis: the VERO trial[J]. J Bone Miner Res, 2018, 33(5):783-794.
doi: 10.1002/jbmr.3384 pmid: 29329484 |
[36] |
Black DM, Greenspan SL, Ensrud KE, et al. The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis[J]. N Engl J Med, 2003, 349(13):1207-1215.
doi: 10.1056/NEJMoa031975 URL |
[37] |
Delmas PD, Munoz F, Black DM, et al. Effects of yearly zoledronic acid 5 mg on bone turnover markers and relation of PINP with fracture reduction in postmenopausal women with osteoporosis[J]. J Bone Miner Res, 2009, 24(9):1544-1551.
doi: 10.1359/jbmr.090310 URL |
[38] |
Guañabens N, Moro-álvarez MJ, Casado E, et al. The next step after anti-osteoporotic drug discontinuation: an up-to-date review of sequential treatment[J]. Endocrine, 2019, 64(3):441-455.
doi: 10.1007/s12020-019-01919-8 pmid: 30963388 |
[39] | Cosman F. Combination therapy for osteoporosis: a reappraisal[J]. Bonekey Rep, 2014, 3:518. |
[1] | 刘欣, 綦才辉, 王振竞, 吕娜, 王少婷, 王淑萍. 胰高血糖素样肽-1激动剂Exendin-4 刺激小鼠胚胎成骨细胞前体细胞MC3T3-E1的转录组学体外研究[J]. 诊断学理论与实践, 2022, 21(03): 367-373. |
[2] | 中华医学会内分泌学分会. 新型冠状病毒肺炎疫情下骨质疏松症管理专家建议[J]. 诊断学理论与实践, 2022, 21(02): 133-135. |
[3] | 汪纯. 原发性骨质疏松症发病及诊治的现状和展望[J]. 诊断学理论与实践, 2020, 19(03): 209-213. |
[4] | 肖超, 常春康,. 骨髓瘤骨病的病理机制进展与治疗[J]. 诊断学理论与实践, 2015, 14(04): 375-380. |
[5] | 赵东宝, 高颖, 贺玲玲,. 骨关节炎与骨质疏松症关系的再认识[J]. 诊断学理论与实践, 2014, 13(03): 237-239+241+240. |
[6] | 章振林,. 骨质疏松症的诊断和鉴别诊断[J]. 诊断学理论与实践, 2012, 11(01): 19-20. |
[7] | 孟迅吾,. 原发性骨质疏松症的危险因素和风险评估[J]. 诊断学理论与实践, 2012, 11(01): 1-4. |
[8] | 程群,. 维生素D缺乏现状与骨质疏松症关系的认识[J]. 诊断学理论与实践, 2012, 11(01): 5-10. |
[9] | 王赎, 刘建民,. 骨质疏松症的全基因组关联分析进展[J]. 诊断学理论与实践, 2010, 9(05): 518-520. |
[10] | 顾振辉,杨淑蓉,傅宏亮,李佳宁,吴靖川,李劲松,施海虹,吴斌. 双能X线吸收仪测定骨密度对骨质疏松症的诊断价值[J]. 诊断学理论与实践, 2003, 2(03): 44-46. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||