诊断学理论与实践 ›› 2020, Vol. 19 ›› Issue (05): 510-515.doi: 10.16150/j.1671-2870.2020.05.012
收稿日期:
2020-03-23
出版日期:
2020-10-25
发布日期:
2022-07-14
通讯作者:
顾文莉
E-mail:guwl72@gmail.com
Received:
2020-03-23
Online:
2020-10-25
Published:
2022-07-14
Contact:
GU Wenli
E-mail:guwl72@gmail.com
摘要:
目的: 探讨微小RNA(microRNA, miRNA)-337-3p在口腔鳞状细胞癌(oral squamous cell carcinoma, OSCC)组织中的表达及其临床意义。方法: 收集20例OSCC患者的术后标本,检测癌组织及癌旁正常组织中的miRNA-337-3p表达水平,分析其表达水平与患者临床病理参数间的相关性;采用划痕试验评估miRNA-337-3p对OSCC细胞株HN30迁移能力的影响,探索可能的分子机制。结果: 与癌旁正常组织相比,OSCC组织中的miRNA-337-3p呈显著低表达(P<0.000 1),且其表达水平与OSCC患者淋巴结转移状况显著相关(P<0.05);与未发生淋巴结转移的患者(N0)相比,发生淋巴结转移(N1+N2)患者的OSCC组织中miRNA-337-3p表达水平显著降低(P<0.05)。在HN30细胞中,过表达miRNA-337-3p的细胞迁移能力降低,抑制miRNA-337-3p表达,则细胞迁移能力上升。miRNA-337-3p可抑制基质金属蛋白酶14 (matrix metalloproteinase-14,MMP-14)蛋白的表达。结论: miRNA-337-3p在OSCC中发挥抑癌作用,其可能具有抑制OSCC细胞侵袭及转移的功能,其有望成为OSCC侵袭、转移的早期诊断标志物及为预后监测提供帮助。
中图分类号:
张星明, 顾文莉. 微小RNA-337-3p在口腔鳞状细胞癌中的表达及临床意义[J]. 诊断学理论与实践, 2020, 19(05): 510-515.
ZHANG Xingming, GU Wenli. Expression of microRNA-337-3p in oral squamous cell carcinoma and its clinical significance[J]. Journal of Diagnostics Concepts & Practice, 2020, 19(05): 510-515.
[1] | 何保昌, 高小叶, 陈法, 等. 口腔癌发病影响因素病例对照研究[J]. 中国公共卫生, 2014, 30(2):248-250. |
[2] |
Gao W, Li JZ, Chen SQ, et al. Decreased brain-expressed X-linked 4 (BEX4) expression promotes growth of oral squamous cell carcinoma[J]. J Exp Clin Cancer Res, 2016, 35(1):92.
doi: 10.1186/s13046-016-0355-6 URL |
[3] |
Miller KD, Siegel RL, Lin CC, et al. Cancer treatment and survivorship statistics, 2016[J]. CA Cancer J Clin, 2016, 66(4):271-289.
doi: 10.3322/caac.21349 URL |
[4] |
Malik UU, Zarina S, Pennington SR. Oral squamous cell carcinoma: key clinical questions, biomarker discovery, and the role of proteomics[J]. Arch Oral Biol, 2016, 63:53-65.
doi: 10.1016/j.archoralbio.2015.11.017 URL |
[5] |
Mello FW, Melo G, Pasetto JJ, et al. The synergistic effect of tobacco and alcohol consumption on oral squamous cell carcinoma: a systematic review and meta-ana-lysis[J]. Clin Oral Investig, 2019, 23(7):2849-2859.
doi: 10.1007/s00784-019-02958-1 URL |
[6] |
Li WC, Lee PL, Chou IC, et al. Molecular and cellular cues of diet-associated oral carcinogenesis--with an emphasis on areca-nut-induced oral cancer development[J]. J Oral Pathol Med, 2015, 44(3):167-177.
doi: 10.1111/jop.12171 URL |
[7] |
Zhang J, Raju GS, Chang DW, et al. Global and targeted circulating microRNA profiling of colorectal adenoma and colorectal cancer[J]. Cancer, 2018, 124(4):785-796.
doi: 10.1002/cncr.31062 URL |
[8] | Kim MH, Cho JS, Kim Y, et al. Discriminating between terminal- and non-terminal respiratory unit-type lung adenocarcinoma based on microRNA profiles[J]. PLoS One, 2016, 11(8):e0160996. |
[9] |
Liang Z, Kong R, He Z, et al. High expression of miR-493-5p positively correlates with clinical prognosis of non small cell lung cancer by targeting oncogene ITGB1[J]. Oncotarget, 2017, 8(29):47389-47399.
doi: 10.18632/oncotarget.17650 pmid: 28537888 |
[10] |
Cinegaglia NC, Andrade SC, Tokar T, et al. Integrative transcriptome analysis identifies deregulated microRNA-transcription factor networks in lung adenocarcinoma[J]. Oncotarget, 2016, 7(20):28920-28934.
doi: 10.18632/oncotarget.8713 pmid: 27081085 |
[11] |
Feng H, Ge F, Du L, et al. MiR-34b-3p represses cell proliferation, cell cycle progression and cell apoptosis in non-small-cell lung cancer (NSCLC) by targeting CDK4[J]. J Cell Mol Med, 2019, 23(8):5282-5291.
doi: 10.1111/jcmm.14404 URL |
[12] | Swellam M, Zahran RFK, Ghonem SA, et al. Serum miRNA-27a as potential diagnostic nucleic marker for breast cancer[J]. Arch Physiol Biochem, 2019,1-7. |
[13] |
Wang Z, Wang J, Yang Y, et al. Loss of has-miR-337-3p expression is associated with lymph node metastasis of human gastric cancer[J]. J Exp Clin Cancer Res, 2013, 32(1):76.
doi: 10.1186/1756-9966-32-76 URL |
[14] |
Kim SY, Lee YH, Bae YS. MiR-186, miR-216b, miR-337-3p, and miR-760 cooperatively induce cellular senescence by targeting α subunit of protein kinase CKⅡ in human colorectal cancer cells[J]. Biochem Biophys Res Commun, 2012, 429(3-4):173-179.
doi: 10.1016/j.bbrc.2012.10.117 URL |
[15] |
Xiang X, Mei H, Zhao X, et al. miRNA-337-3p suppresses neuroblastoma progression by repressing the transcription of matrix metalloproteinase 14[J]. Oncotarget, 2015, 6(26):22452-22466.
pmid: 26084291 |
[16] |
Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs[J]. Cardiovasc Res, 2006, 69(3):562-573.
doi: 10.1016/j.cardiores.2005.12.002 URL |
[17] |
Conlon GA, Murray GI. Recent advances in understan-ding the roles of matrix metalloproteinases in tumour inva-sion and metastasis[J]. J Pathol, 2019, 247(5):629-640.
doi: 10.1002/path.5225 |
[18] |
Dufour A, Sampson NS, Zucker S, et al. Role of the hemopexin domain of matrix metalloproteinases in cell migration[J]. J Cell Physiol, 2008, 217(3):643-651.
doi: 10.1002/jcp.21535 URL |
[19] |
Remacle AG, Cieplak P, Nam DH, et al. Selective function-blocking monoclonal human antibody highlights the important role of membrane type-1 matrix metalloproteinase (MT1-MMP) in metastasis[J]. Oncotarget, 2017, 8(2):2781-2799.
doi: 10.18632/oncotarget.13157 pmid: 27835863 |
[20] | Li Y, Kuscu C, Banach A, et al. miR-181a-5p inhibits cancer cell migration and angiogenesis via downregulation of matrix metalloproteinase-14[J]. Cancer Res, 2015, 75(13):2674-2685. |
[21] |
Momen-Heravi F, Bala S. Emerging role of non-coding RNA in oral cancer[J]. Cell Signal, 2018, 42:134-143.
doi: S0898-6568(17)30277-2 pmid: 29056500 |
[22] |
Huang SH, O'Sullivan B. Overview of the 8th edition TNM classification for head and neck cancer[J]. Curr Treat Options Oncol, 2017, 18(7):40.
doi: 10.1007/s11864-017-0484-y URL |
[23] |
Zhuang Q, Shen J, Chen Z, et al. MiR-337-3p suppresses the proliferation and metastasis of clear cell renal cell carcinoma cells via modulating Capn4[J]. Cancer Biomark, 2018, 23(4):515-525.
doi: 10.3233/CBM-181645 URL |
[24] |
Cao XM. Role of miR-337-3p and its target Rap1A in modulating proliferation, invasion, migration and apoptosis of cervical cancer cells[J]. Cancer Biomark, 2019, 24(3):257-267.
doi: 10.3233/CBM-181225 URL |
[25] |
Yuan H, Wei R, Xiao Y, et al. RHBDF1 regulates APC-mediated stimulation of the epithelial-to-mesenchymal transition and proliferation of colorectal cancer cells in part via the Wnt/β-catenin signalling pathway[J]. Exp Cell Res, 2018, 368(1):24-36.
doi: 10.1016/j.yexcr.2018.04.009 URL |
[1] | 孙艳艳, 兰信堂. 肺癌颅脑转移患者接受放射治疗后前庭功能受损1例[J]. 诊断学理论与实践, 2022, 21(05): 632-634. |
[2] | 王文涵, 夏蜀珺, 詹维伟. 长链非编码RNA ENST00000489676在超声评估甲状腺乳头状癌颈部淋巴结转移中的应用[J]. 诊断学理论与实践, 2022, 21(04): 514-519. |
[3] | 徐琛莹, 李嫣然, 倪晓枫, 徐上妍, 林青. 超声预测老年甲状腺乳头状癌患者颈部淋巴结转移的效能及相关超声征象分析[J]. 诊断学理论与实践, 2022, 21(03): 343-348. |
[4] | 丁燕飞, 陈平, 罗方秀, 吴云林. 以左锁骨上淋巴结肿大为首发表现的结肠癌一例报道[J]. 诊断学理论与实践, 2021, 20(06): 584-587. |
[5] | 况李君, 陶玲玲, 詹维伟, 李伟伟, 樊金芳, 周伟. 负压细针抽吸和毛细抽吸活检法穿刺洗脱液中甲状腺球蛋白测定在甲状腺乳头状癌淋巴结转移中的诊断价值比较[J]. 诊断学理论与实践, 2021, 20(04): 367-371. |
[6] | 周伟, 陈易来, 詹维伟. 细针穿刺洗脱液中甲状腺球蛋白检测在诊断分化型甲状腺癌淋巴结转移中的应用进展[J]. 诊断学理论与实践, 2020, 19(04): 339-343. |
[7] | 王志威, 张晓晓, 王杰, 魏敏, 邵玉国, 籍敏, 杨莉, 何奇. 局部晚期乳腺癌患者腋窝淋巴结转移范围的影响因素分析[J]. 诊断学理论与实践, 2019, 18(2): 189-192. |
[8] | 王兰, 张欢, 葛颖倩, 陆静, 崔征, 颜凌, 潘自来. 胃癌肝转移病灶的人工智能辅助半自动分割软件的临床应用评估[J]. 诊断学理论与实践, 2019, 18(05): 515-520. |
[9] | 王登峰, 崔文燕, 邹纬, 李芳, 王学锋, 蔡晓红. α-1,3- N-乙酰半乳糖胺基转移酶p.M142I突变导致Ax亚型的分子机制研究[J]. 诊断学理论与实践, 2018, 17(03): 260-265. |
[10] | 毛敏静, 张斌斌, 叶廷军, 王学锋. 巨噬细胞在甲状腺细针穿刺细胞学诊断中的意义[J]. 诊断学理论与实践, 2018, 17(01): 56-59. |
[11] | 王晨琛, 詹维伟. 甲状腺癌术后复发转移灶的超声特征及超声引导下细针穿刺的应用价值[J]. 诊断学理论与实践, 2018, 17(01): 111-114. |
[12] | 顾青, 潘晓林, 赵艳. 转移相关基因1蛋白在子宫颈病变组织中的表达及临床意义[J]. 诊断学理论与实践, 2017, 16(03): 333-337. |
[13] | 李莉, 卞炳贤, 张良, 沈立松. 尿液多种microRNA检测方法的建立及其在膀胱癌诊断中的应用研究[J]. 诊断学理论与实践, 2017, 16(01): 93-97. |
[14] | 胡荣郭, 庞德芳, 黄澍, 沈振坤, 陈玮, 杨育伟, 来小音, 朱玮, 吴菲菲, 计海峰, 吴大玉, 江梅, 孙家兰, 李龙宣. 急性缺血性卒中早期血浆miRNAs水平与房颤发生间的关系[J]. 诊断学理论与实践, 2017, 16(01): 98-103. |
[15] | 康慧莉, 董屹婕, 詹维伟. 甲状腺微小乳头状癌淋巴结转移的相关因素研究[J]. 诊断学理论与实践, 2016, 15(05): 482-486. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||