诊断学理论与实践 ›› 2022, Vol. 21 ›› Issue (04): 541-546.doi: 10.16150/j.1671-2870.2022.04.022
收稿日期:
2022-02-20
出版日期:
2022-08-25
发布日期:
2022-11-07
通讯作者:
冯炜炜
E-mail:fww12066@rjh.comc.n
基金资助:
HE Xin, CHEN Hui, FENG Weiwei()
Received:
2022-02-20
Online:
2022-08-25
Published:
2022-11-07
Contact:
FENG Weiwei
E-mail:fww12066@rjh.comc.n
摘要:
卵巢癌是主要的附件恶性肿瘤,是全球女性癌症相关死亡的第二大常见原因,约75%的患者被诊断时已属晚期,5年生存率低于45%。因此,对附件肿块进行准确的非侵入性良恶性鉴别,对于患者的预后及生存质量至关重要。近年来,人工智能领域进展迅速,机器学习作为人工智能领域的一个分支,具有从大量复杂数据中进行高效学习的能力,逻辑回归、人工神经网络、支持向量机、深度卷积神经网络等算法已被应用于辅助超声鉴别附件肿块良恶性诊断中,并具有良好的诊断效能。本文将对机器学习算法在辅助超声鉴别附件肿块良恶性中应用价值的研究进展进行综述。
中图分类号:
何新, 陈慧, 冯炜炜. 机器学习算法在辅助超声诊断附件肿块良恶性中的应用研究进展[J]. 诊断学理论与实践, 2022, 21(04): 541-546.
HE Xin, CHEN Hui, FENG Weiwei. Research progress on the application of machine learning in assisted ultrasound diagnosis of adnexal masses[J]. Journal of Diagnostics Concepts & Practice, 2022, 21(04): 541-546.
表1
文中纳入机器学习在超声诊断附件包块良恶性中的研究汇总
研究 | 年份 | AUC | 灵敏度 | 特异度 | 图像数量(恶性/良性) | 患者例数(恶性/良性) | 模型 | |
---|---|---|---|---|---|---|---|---|
LR | Timmerman[ | 2005 | 0.936 | 93% | 77.0% | 1 066(266/800) | LR1 | |
0.916 | 92% | 75.0% | LR2 | |||||
ANN | Biagiotti[ | 1999 | 96% | 97.7% | 226(51/175) | |||
Timmermann[ | 1999 | 0.979 | 95.9% | 93.5% | 173(49/124) | |||
Moszynski[ | 2006 | 0.968 | 85.7% | 93.1% | 686(255/431) | |||
SVM | Acharya[ | 2012 | 100.0% | 99.8% | 2 000(1 000/1 000) | 20(10/10) | SVM, RBF | |
99.6% | 100% | SVM, linear | ||||||
Khazendar[ | 2019 | 80% | 77.0% | 187(75/112) | 177 | |||
CNN | Zhang[ | 2019 | 0.997 | 99.73% | 95.85% | 428(357/71) | ||
Christiansen[ | 2021 | 0.950 | 96.0% | 86.7% | 3 077 | 758(309/449) | Ovry-Dx1 | |
0.958 | 97.1% | 93.7% | Ovry-Dx2 | |||||
Gao[ | 2022 | 0.911 | 83.1% | 86.8% | 592 275(39 258 /553 017) | 107 624(4 254/103 370) | ||
Chen[ | 2022 | 0.930 | 92% | 85.0% | 422(118/304) | DLfeature | ||
0.900 | 92% | 80.0% | DLdecision |
表2
文中所述机器学习算法优缺点比较
算法 | 优点 | 缺点 |
---|---|---|
逻辑回归算法 | (1)便于理解和实现,可以观测样本的概率分数。 (2)训练速度快 | (1)容易欠拟合。 (2)在一些非线性的数据上表现欠佳 |
人工神经网络 | (1)分类的准确度高,学习能力强。 (2)有较强的鲁棒性和容错能力。 | (1)需要大量的训练样本及参数。 (2)浅层神经网络对于特征学习的表达能力有限,深层神经网络的参数繁多,易导致过拟合,甚至可能因为梯度消失而导致不可学习。 |
支持向量机 | (1)SVM 是一种小样本学习方法。 (2)算法简单,而且具有较好的鲁棒性。 | (1) 常规SVM的分类结果是二分类的,用SVM解决多分类问题存在困难,且不能直接提供概率估计。 (2)SVM算法只有当核函数与数据的分布较为吻合时才能得到好的效果 |
深度卷积神经网络 | (1)具有自学习功能,可以直接从训练数据中提取特征。 (2)可以通过神经网络的深层结构来表示特征之间的关系。 (3)能够获取大量数据中包含的信息,同时实现特征提取、特征选择和分类3个核心步骤,并构建模型。 | (1)具有黑盒性,目前研究无法确定DCNN网络内部是如何运行的。 (2)网络模型复杂程度越高,其对计算设备的硬件要求就越高,对于数据质量的要求也更高 |
[1] |
Webb PM, Jordan SJ. Epidemiology of epithelial ovarian cancer[J]. Best Pract Res Clin Obstet Gynaecol, 2017, 41:3-14.
doi: S1521-6934(16)30091-8 pmid: 27743768 |
[2] | Lheureux S, Braunstein M, Oza AM. Epithelial ovarian cancer: Evolution of management in the era of precision medicine[J]. CA Cancer J Clin, 2019, 69(4):280-304. |
[3] |
Fischerova D. Ultrasound scanning of the pelvis and abdomen for staging of gynecological tumors: a review[J]. Ultrasound Obstet Gynecol, 2011, 38(3):246-266.
doi: 10.1002/uog.10054 pmid: 21898632 |
[4] | Tavoraitè I, Kronlachner L, Opolskienè G, et al. Ultrasound Assessment of Adnexal Pathology: Standardized Methods and Different Levels of Experience[J]. Medicina (Kaunas), 2021, 57(7):708. |
[5] |
Timmerman D, Planchamp F, Bourne T, et al. ESGO/ISUOG/IOTA/ESGE Consensus Statement on pre-operative diagnosis of ovarian tumors[J]. Int J Gynecol Cancer, 2021, 31(7):961-982.
doi: 10.1136/ijgc-2021-002565 pmid: 34112736 |
[6] |
Timmerman D, Valentin L, Bourne TH, et al. Terms, definitions and measurements to describe the sonographic features of adnexal tumors: a consensus opinion from the International Ovarian Tumor Analysis (IOTA) Group[J]. Ultrasound Obstet Gynecol, 2000, 16(5):500-505.
doi: 10.1046/j.1469-0705.2000.00287.x URL |
[7] |
Timmerman D, Testa AC, Bourne T, et al. Logistic regression model to distinguish between the benign and malignant adnexal mass before surgery: a multicenter study by the International Ovarian Tumor Analysis Group[J]. J Clin Oncol, 2005, 23(34):8794-8801.
pmid: 16314639 |
[8] |
Timmerman D, Testa AC, Bourne T, et al. Simple ultrasound-based rules for the diagnosis of ovarian cancer[J]. Ultrasound Obstet Gynecol, 2008, 31(6):681-690.
doi: 10.1002/uog.5365 pmid: 18504770 |
[9] |
van Calster B, van Hoorde K, Valentin L, et al. Evalua-ting the risk of ovarian cancer before surgery using the ADNEX model to differentiate between benign, borderline, early and advanced stage invasive, and secondary metastatic tumours: prospective multicentre diagnostic study[J]. BMJ, 2014, 349:g5920.
doi: 10.1136/bmj.g5920 URL |
[10] |
Amor F, Vaccaro H, Alcázar JL, et al. Gynecologic ima-ging reporting and data system: a new proposal for classifying adnexal masses on the basis of sonographic findings[J]. J Ultrasound Med, 2009, 28(3):285-291.
doi: 10.7863/jum.2009.28.3.285 URL |
[11] |
Andreotti RF, Timmerman D, Strachowski LM, et al. O-RADS US Risk Stratification and Management System: A Consensus Guideline from the ACR Ovarian-Adnexal Reporting and Data System Committee[J]. Radiology, 2020, 294(1):168-185.
doi: 10.1148/radiol.2019191150 pmid: 31687921 |
[12] | Awad M, Khanna R. Machine Learning[M]// Efficient Learning Machines. CA:Apress, Berkeley, 2015:1-18. |
[13] |
Rajkomar A, Dean J, Kohane I. Machine Learning in Medicine[J]. N Engl J Med, 2019, 380(14):1347-1358.
doi: 10.1056/NEJMra1814259 URL |
[14] | Brattain LJ, Telfer BA, Dhyani M, et al. Machine learning for medical ultrasound: status, methods, and future opportunities[J]. Abdom Radiol(NY), 2018, 43(4):786-799. |
[15] | Moustafa AF, Cary TW, Sultan LR, et al. Color Doppler Ultrasound Improves Machine Learning Diagnosis of Breast Cancer[J]. Diagnostics (Basel), 2020, 10(9):631. |
[16] |
Zhao CK, Ren TT, Yin YF, et al. A Comparative Analysis of Two Machine Learning-Based Diagnostic Patterns with Thyroid Imaging Reporting and Data System for Thyroid Nodules: Diagnostic Performance and Unnecessary Biopsy Rate[J]. Thyroid, 2021, 31(3):470-481.
doi: 10.1089/thy.2020.0305 URL |
[17] |
Sone K, Toyohara Y, Taguchi A, et al. Application of artificial intelligence in gynecologic malignancies: A review[J]. J Obstet Gynaecol Res, 2021, 47(8):2577-2585.
doi: 10.1111/jog.14818 URL |
[18] |
Xie HN, Wang N, He M, et al. Using deep-learning algorithms to classify fetal brain ultrasound images as normal or abnormal[J]. Ultrasound Obstet Gynecol, 2020, 56(4):579-587.
doi: 10.1002/uog.21967 pmid: 31909548 |
[19] |
Al′Aref SJ, Anchouche K, Singh G, et al. Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging[J]. Eur Heart J, 2019, 40(24):1975-1986.
doi: 10.1093/eurheartj/ehy404 pmid: 30060039 |
[20] | Verhulst PF. Recherches mathématiques sur la loi d′acroissement de la population[J]. Nouveaux mémoires de l′académie royale des sciences et belles-lettres de Bruxel-les, 1845, 18:1-38. |
[21] | Namburi S. Logistic regression with conjugate gradient descent for document classification[D]. Kansas State University, 2016. |
[22] |
Meys EM, Kaijser J, Kruitwagen RF, et al. Subjective assessment versus ultrasound models to diagnose ovarian cancer: A systematic review and meta-analysis[J]. Eur J Cancer, 2016, 58:17-29.
doi: 10.1016/j.ejca.2016.01.007 pmid: 26922169 |
[23] |
Biagiotti R, Desii C, Vanzi E, et al. Predicting ovarian malignancy: application of artificial neural networks to transvaginal and color Doppler flow US[J]. Radiology, 1999, 210(2):399-403.
pmid: 10207421 |
[24] |
Timmerman D, Verrelst H, Bourne TH, et al. Artificial neural network models for the preoperative discrimination between malignant and benign adnexal masses[J]. Ultrasound Obstet Gynecol, 1999, 13(1):17-25.
doi: 10.1046/j.1469-0705.1999.13010017.x URL |
[25] |
Moszynski R, Szpurek D, Smolen A, et al. Comparison of diagnostic usefulness of predictive models in preliminary differentiation of adnexal masses[J]. Int J Gynecol Cancer, 2006, 16(1):45-51.
pmid: 16445609 |
[26] |
McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. 1943[J]. Bull Math Biol, 1990, 52(1-2):99-115.
doi: 10.1016/S0092-8240(05)80006-0 URL |
[27] | Moguerza JM, Muoz Alberto. Support Vector Machines with Applications 1[J]. Statistical Science, 2006, 21(3):358-362. |
[28] |
Khazendar S, Sayasneh A, Al-Assam H, et al. Automated characterisation of ultrasound images of ovarian tumours: the diagnostic accuracy of a support vector machine and image processing with a local binary pattern operator[J]. Facts Views Vis Obgyn, 2015, 7(1):7-15.
pmid: 25897367 |
[29] |
Acharya UR, Sree SV, Krishnan MM, et al. Ovarian tumor characterization using 3D ultrasound[J]. Technol Cancer Res Treat, 2012, 11(6):543-552.
doi: 10.7785/tcrt.2012.500272 URL |
[30] | Khazendar S, Al-assam H, Du H, et al. Automated classification of static ultrasound images of ovarian tumors based on decision level fusion[C]. proceedings of the 2014 6th Computer Science and Electronic Engineering Conference (CEEC), 2014:25-26. |
[31] |
Khan A, Sohail A, Zahoora U, et al. A survey of the recent architectures of deep convolutional neural networks[J]. Artificial intelligence review, 2020, 53(8):5455-5516.
doi: 10.1007/s10462-020-09825-6 URL |
[32] |
Cai L, Gao J, Zhao D. A review of the application of deep learning in medical image classification and segmentation[J]. Ann Transl Med, 2020, 8(11):713.
doi: 10.21037/atm.2020.02.44 pmid: 32617333 |
[33] |
Zhang L, Huang J, Liu L. Improved Deep Learning Network Based in combination with Cost-sensitive Learning for Early Detection of Ovarian Cancer in Color Ultrasound Detecting System[J]. J Med Syst, 2019, 43(8):251.
doi: 10.1007/s10916-019-1356-8 pmid: 31254110 |
[34] |
Christiansen F, Epstein EL, Smedberg E, et al. Ultrasound image analysis using deep neural networks for discriminating between benign and malignant ovarian tumors: comparison with expert subjective assessment[J]. Ultrasound Obstet Gynecol, 2021, 57(1):155-163.
doi: 10.1002/uog.23530 pmid: 33142359 |
[35] | Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C]. in International Conference on Learning Representations, 2015. |
[36] | He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. |
[37] | Howard AG, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861,2017. |
[38] | Gao Y, Zeng S, Xu X, et al. Deep learning-enabled pelvic ultrasound images for accurate diagnosis of ovarian cancer in China: a retrospective, multicentre, diagnostic study[J]. Lancet Digit Health, 2022, 4(3):e179-e187. |
[39] |
Chen H, Yang BW, Qian L, et al. Deep Learning Prediction of Ovarian Malignancy at US Compared with O-RADS and Expert Assessment[J]. Radiology, 2022, 304(1):106-113.
doi: 10.1148/radiol.211367 URL |
[1] | 王文涵, 夏蜀珺, 詹维伟. 长链非编码RNA ENST00000489676在超声评估甲状腺乳头状癌颈部淋巴结转移中的应用[J]. 诊断学理论与实践, 2022, 21(04): 514-519. |
[2] | 顾炫, 柳俊. 超声筛查鉴别胰腺实性假乳头状瘤与胰腺导管腺癌的研究分析[J]. 诊断学理论与实践, 2022, 21(04): 504-508. |
[3] | 马雪菲, 王学锋, 王侃侃. 浆细胞瘤变异体易位1和MYC基因在泛癌中的表达及生存期预测价值分析[J]. 诊断学理论与实践, 2022, 21(04): 490-496. |
[4] | 屈骞, 海汪溪, 胡生焰, 张敏, 陈肖玥, 周熠磊, 王瑾, 胡晓平, 李彪, 胡佳佳. 多巴胺转运蛋白显像探针18F-FP-CIT的AllinOne模块自动化制备及大鼠基底节Micro PET/CT显像[J]. 诊断学理论与实践, 2022, 21(04): 482-489. |
[5] | 车稳, 柳蒋书, 陈晓炎, 王朝夫, 袁菲, 王璇. 肺混合性鳞状细胞和腺性乳头状瘤2例临床病理特征及冷冻切片病理诊断误诊分析[J]. 诊断学理论与实践, 2022, 21(04): 476-481. |
[6] | 徐程, 徐欣欣, 田烨, 范嘉盈, 宋珍, 杨玲. 下呼吸道流感嗜血杆菌定植通过Toll样受体4影响哮喘小鼠免疫失衡[J]. 诊断学理论与实践, 2022, 21(04): 470-475. |
[7] | 鲍萍萍, 吴春晓, 顾凯, 庞怡, 王春芳, 施亮, 向詠梅, 龚杨明, 窦剑明, 吴梦吟, 付晨, 施燕. 上海市2016年胃癌发病特征及2002年至2016年胃癌发病趋势分析[J]. 诊断学理论与实践, 2022, 21(04): 462-469. |
[8] | 杨慧, 李云璐, 杨康, 李世举, 何瑾. 进行性肌阵挛共济失调近亲家系全外显子测序漏诊原因分析与对策[J]. 诊断学理论与实践, 2022, 21(04): 456-461. |
[9] | 胡静静, 吕海伟, 荀静娜, 沈银忠, 刘莉, 卢洪洲. 2012年至2021年上海市艾滋病合并分枝杆菌感染患者的菌种分布特征[J]. 诊断学理论与实践, 2022, 21(04): 450-455. |
[10] | 陈志敏, 刘波, 何浩岚, 何耀祖, 冯理智, 刘新华, 张坚生, 蔡卫平, 李凌华. 133例艾滋病合并马尔尼菲篮状菌病死亡病例分析[J]. 诊断学理论与实践, 2022, 21(04): 444-449. |
[11] | 杜燕然, 焦景, 任芸芸, 周建桥. 超声影像组学技术在评估胎肺成熟度中的应用[J]. 诊断学理论与实践, 2022, 21(03): 326-330. |
[12] | 张娟娟, 何亲羽, 杨媛艳, 董治亚, 肖园, 陈立芬, 张彩萍. Lamb-Shaffer综合征表现为矮小症伴语言、运动发育迟缓一例及文献复习[J]. 诊断学理论与实践, 2022, 21(03): 336-342. |
[13] | 刘欣, 綦才辉, 王振竞, 吕娜, 王少婷, 王淑萍. 胰高血糖素样肽-1激动剂Exendin-4 刺激小鼠胚胎成骨细胞前体细胞MC3T3-E1的转录组学体外研究[J]. 诊断学理论与实践, 2022, 21(03): 367-373. |
[14] | 阮玉凤, 胡丽萍, 陈史蓉, 尹君, 孙璟. 上海浦东新区全科医师对规范化诊治幽门螺杆菌感染掌握程度的调研[J]. 诊断学理论与实践, 2022, 21(03): 399-404. |
[15] | 马少辰, 郭昕, 王铭维, 王惠君, 余启军, 苏文月, 王华龙, 马芹颖. 基于游戏的脑电神经反馈训练对认知功能改善作用的研究[J]. 诊断学理论与实践, 2022, 21(01): 41-45. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||