诊断学理论与实践 ›› 2024, Vol. 23 ›› Issue (02): 146-154.doi: 10.16150/j.1671-2870.2024.02.008
收稿日期:
2023-10-01
出版日期:
2024-04-25
发布日期:
2024-07-04
通讯作者:
陈佳艺 E-mail:cjy11756@rjh.com.cn基金资助:
OU Dan, CAI Gang, CHEN Jiayi()
Received:
2023-10-01
Published:
2024-04-25
Online:
2024-07-04
摘要:
目的:采用生物信息分析筛选三阴性乳腺癌脑转移相关差异性表达基因(differentially expressed genes,DEG),并探索影响预后的潜在作用机制。方法:在基因表达数据库(Gene Expression Omnibus, GEO)检索获得GSE76250(三阴性乳腺癌组织与正常乳腺组织)和GSE125989(三阴性乳腺癌脑转移病灶组织与三阴性乳腺癌原发灶组织) 2个数据集,筛选DEG。采用GO(Gene Ontology)分析和KEGG(Kyoto Encyclopedia of Genes and Genomes)分析寻找潜在的三阴性乳腺癌脑转移相关基因。通过癌症基因组图谱(The Cancer Genome Atlas, TCGA)数据库中的临床组织样本,验证相关基因表达水平与乳腺癌预后间的关系,并使用KEGG的基因集进行基因富集分析,评估DEG可能参与的信号通路。结果:在GSE125989和GSE76250数据集中共筛选出52个DEG,蛋白质相互作用网络(protein-protein interaction, PPI)分析提示RAD51AP1为三阴性乳腺癌脑转移的重要相关基因。TCGA数据分析显示,相较于癌旁组织RAD51AP1在乳腺癌组织中高表达;不同分子分型中,基底样型中乳腺癌PAD51AP1高表达。以RAD51AP1在癌组织表达中位数[log2(TPM+1)=3.85],将乳腺癌患者分为高表达和低表达组,生存分析显示,高表达患者的中位生存期差于低表达者[3 873 d比3 945 d,P<0.05,HR=1.40(1.01~1.94)]。通过GO、KEGG、基因富集分析(gene set enrichment analysis, GSEA)发现,RAD51AP1在细胞周期、DNA复制、错配修复等信号通路中有富集明显。基于细胞周期和DNA损伤修复信号通路相关蛋白信息构建PPI,筛选与RAD51AP1直接相互作用的蛋白质,其中增殖细胞核抗原(proliferating cell nuclear antigen,PCNA)与RAD51AP1的相关性较强(R=0.715,P<0.001)。结论:RAD51AP1在三阴性乳腺癌及其脑转移组织中高表达,可能作为潜在的诊断三阴性乳腺癌及预后不良的生物标志物,且其异常表达介导乳腺癌脑转移进程可能与PCNA相关。
中图分类号:
欧丹, 蔡钢, 陈佳艺. RAD51AP1基因表达在三阴性乳腺癌脑转移中的生物信息分析[J]. 诊断学理论与实践, 2024, 23(02): 146-154.
OU Dan, CAI Gang, CHEN Jiayi. Bioinformatics analysis for expression of RAD51AP1 in triple negative breast cancer with brain metastasis[J]. Journal of Diagnostics Concepts & Practice, 2024, 23(02): 146-154.
[1] | SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. |
[2] | FOULKES W D, SMITH I E, REIS-FILHO J S. Triple-negative breast cancer[J]. N Engl J Med, 2010, 363(20):1938-1948. |
[3] | GE J, ZUO W, CHEN Y, et al. The advance of adjuvant treatment for triple-negative breast cancer[J]. Cancer Biol Med, 19(2):187-201. |
[4] | PARISE C, CAGGIANO V. The influence of marital status and race/ethnicity on risk of mortality for triple negative breast cancer[J]. PLoS One, 2018, 13(4):e0196134. |
[5] | SZKLARCZYK D, GABLE A L, LYON D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets[J]. Nucleic Acids Res, 2019, 47(D1):D607-D613. |
[6] |
WANG Z, JENSEN M A, ZENKLUSEN J C. A Practical Guide to The Cancer Genome Atlas (TCGA)[J]. Methods Mol Biol, 2016, 1418:111-141.
doi: 10.1007/978-1-4939-3578-9_6 pmid: 27008012 |
[7] | GYÖRFFY B, LANCZKY A, EKLUND A C, et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients[J]. Breast Cancer Res Treat, 2010, 123(3):725-731. |
[8] |
SUBRAMANIAN A, KUEHN H, GOULD J, et al. GSEA-P: a desktop application for Gene Set Enrichment Analysis[J]. Bioinformatics, 2007, 23(23):3251-3253.
doi: 10.1093/bioinformatics/btm369 pmid: 17644558 |
[9] | BERGEN E S, TICHY C, BERGHOFF A S, et al. Prognostic impact of breast cancer subtypes in elderly patients[J]. Breast Cancer Res Treat, 2016, 157(1):91-99. |
[10] |
DAWOOD S, BROGLIO K, ESTEVA F J, et al. Survival among women with triple receptor-negative breast cancer and brain metastases[J]. Ann Oncol, 2009, 20(4):621-627.
doi: 10.1093/annonc/mdn682 pmid: 19150943 |
[11] |
DAWOOD S, LEI X, LITTON J K, et al. Incidence of brain metastases as a first site of recurrence among women with triple receptor-negative breast cancer[J]. Cancer, 2012, 118(19):4652-4659.
doi: 10.1002/cncr.27434 pmid: 22359359 |
[12] | SUNG P, KLEIN H. Mechanism of homologous recombination: mediators and helicases take on regulatory functions[J]. Nat Rev Mol Cell Biol, 2006, 7(10):739-750. |
[13] | ZHENG L, LI L, XIE J, et al. Six novel biomarkers for dia-gnosis and prognosis of esophageal squamous cell carcinoma: validated by scRNA-seq and qPCR[J]. J Cancer, 2021, 12(3):899-911. |
[14] |
Chudasama D, Bo V, Hall M, et al. Identification of cancer biomarkers of prognostic value using specific gene regulatory networks (GRN): a novel role of RAD51AP1 for ovarian and lung cancers[J]. Carcinogenesis, 2018, 39(3):407-417.
doi: 10.1093/carcin/bgx122 pmid: 29126163 |
[15] |
KREIKE B, VAN KOUWENHOVE M, HORLINGS H, et al. Gene expression profiling and histopathological characterization of triple-negative/basal-like breast carcinomas[J]. Breast Cancer Res, 2007, 9(5):R65.
doi: 10.1186/bcr1771 pmid: 17910759 |
[16] | JREIS-FILHO J S, PUSZTAI L. Gene expression profi-ling in breast cancer: classification, prognostication, and prediction[J]. Lancet, 2011, 378(9805):1812-1823. |
[17] |
ISHIHARA M, MUKAI H, NAGAI S, et al. Retrospective analysis of risk factors for central nervous system metastases in operable breast cancer: effects of biologic subtype and Ki67 overexpression on survival[J]. Oncology, 2013, 84(3):135-140.
doi: 10.1159/000345321 pmid: 23235554 |
[18] |
AZIZ S A, PERVEZ S, KHAN S M, et al. Prognostic value of proliferating cell nuclear antigen (PCNA) in infiltrating ductal carcinoma breast[J]. J Coll Physicians Surg Pak, 2005, 15(4):225-229.
pmid: 15857596 |
[19] | SOSIŃSKA-MIELCAREK K, DUCHNOWSKA R, WINCZURA P, et al. Immunohistochemical prediction of brain metastases in patients with advanced breast cancer: the role of Rad51[J]. Breast, 2013, 22(6):1178-1183. |
[20] |
CASTANEDA C A, CASTILLO M, BERNABE L A, et al. Impact of pathological features of brain metastases in prognosis[J]. Biomark Med, 2018, 12(5):475-485.
doi: 10.2217/bmm-2017-0161 pmid: 29697273 |
[21] | KUMAR R, WHITEHURST C B, PAGANO J S. The Rad6/18 ubiquitin complex interacts with the Epstein-Barr virus deubiquitinating enzyme, BPLF1, and contri-butes to virus infectivity[J]. J Virol, 2014, 88(11):6411-6422. |
[22] |
KAMINSKI N, WONDISFORD A R, KWON Y, et al. RAD51AP1 regulates ALT-HDR through chromatin-directed homeostasis of TERRA[J]. Mol Cell, 2022, 82(21):4001-4017.e7.
doi: 10.1016/j.molcel.2022.09.025 pmid: 36265488 |
[23] |
ZHAO H, GAO Y, CHEN Q, et al. RAD51AP1 promotes progression of ovarian cancer via TGF-β/Smad signalling pathway[J]. J Cell Mol Med, 2021, 25(4):1927-1938.
doi: 10.1111/jcmm.15877 pmid: 33314567 |
[24] | VÉQUAUD E, DESPLANQUES G, JÉZÉQUEL P, et al. Survivin contributes to DNA repair by homologous recombination in breast cancer cells[J]. Breast Cancer Res Treat, 2016, 155(1):53-63. |
[25] | LIBERTI S E, ANDERSEN S D, WANG J, et al. Bi-directional routing of DNA mismatch repair protein human exonuclease 1 to replication foci and DNA double strand breaks[J]. DNA Repair (Amst), 2011, 10(1):73-86. |
[26] |
SCHWAB M, CLAAS A, SAVELYEVA L. BRCA2: a genetic risk factor for breast cancer[J]. Cancer Lett, 2002, 175(1):1-8.
pmid: 11734330 |
[27] |
周小妹, 罗波. 影响三阴性乳腺癌免疫检查点抑制剂疗效的潜在生物学因素[J]. 肿瘤, 2023, 43(02):143-150.
doi: 10.3781/j.issn.1000-7431.2023.2207-0582 |
ZHOU XM, LUO B. Potential biological factors affecting the efficacy of immunotherapy for triple-negative breast cancer[J]. Tumor, 2023, 43(02): 143-150.
doi: 10.3781/j.issn.1000-7431.2023.2207-0582 |
|
[28] | 赵帅, 罗琳, 肖琳. 波形蛋白在三阴性乳腺癌中的表达及与乳腺癌[J]. 中国临床研究, 2023, 36(7):999-1004. |
ZHAO S, LUO L, XIAO L. Vimentin expression in triple negative breast cancer and its correlation with breast cancer specific genel[J]. Chin J Clin Res, 2023, 36(7):999-1004. |
[1] | 刘娟, 殷丽娟, 范德生. AR、SKP2、SOX10、PD-L1及TIL表达在三阴性乳腺癌中的意义[J]. 诊断学理论与实践, 2024, 23(02): 162-172. |
[2] | 孙艳艳, 兰信堂. 肺癌颅脑转移患者接受放射治疗后前庭功能受损1例[J]. 诊断学理论与实践, 2022, 21(05): 632-634. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||