[1] |
ZHANG X, CHEN J, YU N, et al. Reducing contrast medium dose with low photon energy images in renal dual-energy spectral CT angiography and adaptive statistical iterative reconstruction (ASIR)[J]. Br J Radiol, 2021, 94(1120):20200974.
|
[2] |
ZENG S E, DU M Y, YU Y, et al. Ultrasound, CT, and MR imaging for evaluation of cystic renal masses[J]. J Ultrasound Med, 2022, 41(4):807-819.
|
[3] |
GEYER L L, SCHOEPF U J, MEINEL F G, et al. State of the art: Iterative CT reconstruction techniques[J]. Radio-logy, 2015, 276(2):339-357.
|
[4] |
ALTHOFF C E, GÜNTHER R W, HAMM B, et al. Intra-arterial ultra low iodine CT angiography of renal transplant arteries[J]. Cardiovasc Intervent Radiol, 2014, 37(4):1062-1067.
doi: 10.1007/s00270-014-0838-9
pmid: 24464257
|
[5] |
VIRARKAR M K, VULASALA S S R, GUPTA A V, et al. Virtual Non-contrast Imaging in The Abdomen and The Pelvis: An Overview[J]. Semin Ultrasound CT MR, 2022, 43(4):293-310.
doi: 10.1053/j.sult.2022.03.004
pmid: 35738815
|
[6] |
CHENG Y, SUN J, LI J, et al. The added value of virtual unenhanced images obtained from dual-energy CT urography in the detection and measurement of urinary stone[J]. Urology, 2022, 166:118-125.
|
[7] |
MA G, HAN D, DANG S, et al. Replacing true unenhanced imaging in renal carcinoma with virtual unenhanced images in dual-energy spectral CT: a feasibility study[J]. Clin Radiol, 2021, 76(1):81,e21-e27.
|
[8] |
XIAO J M, HIPPE D S, ZECEVIC M, et al. Virtual unenhanced dual-energy ct images obtained with a multimaterial decomposition algorithm: diagnostic value for renal mass and urinary stone evaluation[J]. Radiology, 2021, 298(3):611-619.
doi: 10.1148/radiol.2021192448
pmid: 33464180
|
[9] |
MEYER M, NELSON R C, VERNUCCIO F, et al. Virtual unenhanced images at dual-energy CT: influence on renal lesion characterization[J]. Radiology, 2019, 291(2):381-390.
doi: 10.1148/radiol.2019181100
pmid: 30860450
|
[10] |
DELABIE A, BOUZERAR R, PICHOIS R, et al. Diagnostic performance and image quality of deep learning image reconstruction (DLIR) on unenhanced low-dose abdominal CT for urolithiasis[J]. Acta Radiol, 2022, 63(9):1283-1292.
|
[11] |
YOO Y J, CHOI I Y, YEOM S K, et al. Evaluation of abdominal ct obtained using a deep learning-based image reconstruction engine compared with CT using adaptive statistical iterative reconstruction[J]. J Belg Soc Radiol, 2022, 106(1):15.
doi: 10.5334/jbsr.2638
pmid: 35480337
|
[12] |
PARK J, SHIN J, MIN I K, et al. Image quality and lesion detectability of lower-dose abdominopelvic CT obtained using deep learning image reconstruction[J]. Korean J Radiol, 2022, 23(4):402-412.
doi: 10.3348/kjr.2021.0683
pmid: 35289146
|
[13] |
SEO J Y, JOO I, YOON J H, et al. Deep learning-based reconstruction of virtual monoenergetic images of kVp-switching dual energy CT for evaluation of hypervascular liver lesions: Comparison with standard reconstruction technique[J]. Eur J Radiol, 2022, 154:110390.
|
[14] |
ZHONG J, XIA Y, CHEN Y, et al. Deep learning image reconstruction algorithm reduces image noise while alters radiomics features in dual-energy CT in comparison with conventional iterative reconstruction algorithms: a phantom study[J]. Eur Radiol, 2023, 33(2):812-824.
|