Journal of Diagnostics Concepts & Practice ›› 2019, Vol. 18 ›› Issue (1): 56-60.doi: 10.16150/j.1671-2870.2019.01.011
• Original articles • Previous Articles Next Articles
WEI Jian1, GAO Pingjin2, HAN Weiqing2()
Received:
2018-09-20
Online:
2019-02-25
Published:
2019-02-25
Contact:
HAN Weiqing
E-mail:hanweiqing2000@163.com
CLC Number:
WEI Jian, GAO Pingjin, HAN Weiqing. Effect of α7 nicotinic acetylcholine receptor activation on transforming growth factor β1-induced phenotypic transformation of adventitia fibroblasts studied in vitro[J]. Journal of Diagnostics Concepts & Practice, 2019, 18(1): 56-60.
[1] | Mann T, Zilles K, Klawitter F, et al. Acetylcholine Neurotransmitter Receptor Densities in the Striatum of Hemiparkinsonian Rats Following Botulinum Neurotoxin-A Injection[J]. Front Neuroanat, 2018, 12:65. |
[2] | Carlisle DL, Hopkins TM, Gaither-Davis A, et al. Nicotine signals through muscle-type and neuronal nicotinic acetylcholine receptors in both human bronchial epithelial cells and airway fibroblasts[J]. Respir Res, 2004, 5:27. |
[3] | Ween H, Thorin-Hagene K, Andersen E, et al. Alpha3* and alpha 7 nAChR-mediated Ca2+ transient generation in IMR-32 neuroblastoma cells[J]. Neurochem Int, 2010, 57(3):269-277. |
[4] | Komal P, Gudavicius G, Nelson CJ, et al. T-cell receptor activation decreases excitability of cortical interneurons by inhibiting α7 nicotinic receptors[J]. J Neurosci, 2014, 34(1):22-35. |
[5] | Liu Q, Xie X, Emadi S, et al. A novel nicotinic mechanism underlies β-amyloid-induced neurotoxicity[J]. Neuropharmacology, 2015, 97:457-63. |
[6] | Su X, Lee JW, Matthay ZA, et al. Activation of the alpha7 nAChR reduces acid-induced acute lung injury in mice and rats[J]. Am J Respir Cell Mol Biol, 2007, 37(2):186-192. |
[7] | Liu Q, Liu C, Jiang L, et al. α 7 Nicotinic acetylcholine receptor-mediated anti-inflammatory effect in a chronic migraine rat model via the attenuation of glial cell activation[J]. J Pain Res, 2018, 11:1129-1140. |
[8] | Li XW, Wang H. Non-neuronal nicotinic alpha 7 receptor, a new endothelial target for revascularization[J]. Life Sci, 2006, 78(16):1863-1870. |
[9] | Xu F, Liu Y, Shi L, et al. RGS 3 inhibits TGF-β1/Smad signalling in adventitial fibroblasts[J]. Cell Biochem Funct, 2017, 35(6):334-338. |
[10] | Xu JY, Chang NB, Li T, et al. Endothelial Cells Inhibit the Angiotensin II Induced Phenotypic Modulation of Rat Vascular Adventitial Fibroblasts[J]. J Cell Biochem, 2017, 118(7):1921-1927. |
[11] | Herrmann J, Samee S, Chade A, et al. Differential effect of experimental hypertension and hypercholesterolemia on adventitial remodeling[J]. Arterioscler Thromb Vasc Biol, 2005, 25(2):447-453. |
[12] | Sartore S, Chiavegato A, Faggin E, et al. Contribution of adventitial fibroblasts to neointima formation and vascular remodeling: from innocent bystander to active participant[J]. Circ Res, 2001, 89(12):1111-1121. |
[13] | Coen M, Gabbiani G, Bochaton-Piallat ML. Myofibroblast-mediated adventitial remodeling: an underestimated player in arterial pathology[J]. Arterioscler Thromb Vasc Biol, 2011, 31(11):2391-2396. |
[14] | Maiellaro K, Taylor WR. The role of the adventitia in vascular inflammation[J]. Cardiovasc Res, 2007, 75(4):640-648. |
[15] | Forte A, Della Corte A, De Feo M, et al. Role of myofibroblasts in vascular remodelling: focus on restenosis and aneurysm[J]. Cardiovasc Res, 2010, 88(3):395-405. |
[16] | Kingston PA, Sinha S, David A, et al. Adenovirus-mediated gene transfer of a secreted transforming growth factor-beta type Ⅱ receptor inhibits luminal loss and constrictive remodeling after coronary angioplasty and enhances adventitial collagen deposition[J]. Circulation, 2001, 104(21):2595-2601. |
[17] | Wildgruber M, Weiss W, Berger H, et al. Association of circulating transforming growth factor beta, tumor necrosis factor alpha and basic fibroblast growth factor with restenosis after transluminal angioplasty[J]. Eur J Vasc Endovasc Surg, 2007, 34(1):35-43. |
[18] | Khan R, Agrotis A, Bobik A. Understanding the role of transforming growth factor-beta1 in intimal thickening after vascular injury[J]. Cardiovasc Res, 2007, 74(2):223-234. |
[19] | Gao PJ, Li Y, Sun AJ, et al. Differentiation of vascular myofibroblasts induced by transforming growth factor-beta1 requires the involvement of protein kinase Calpha[J]. J Mol Cell Cardiol, 2003, 35(9):1105-1112. |
[20] | Fleenor BS, Marshall KD, Durrant JR, et al. Arterial stiffening with ageing is associated with transforming growth factor-β1-related changes in adventitial collagen: reversal by aerobic exercise[J]. J Physiol, 2010, 588(Pt 20):3971-3982. |
[21] | Ren M, Wang B, Zhang J, et al. Smad2 and Smad3 as mediators of the response of adventitial fibroblasts induced by transforming growth factor β1[J]. Mol Med Rep, 2011, 4(3):561-567. |
[22] | Li X, Xu Y, Cheng Y, et al. α 7 Nicotinic acetylcholine receptor contributes to the alleviation of lung ischemia-reperfusion injury by transient receptor potential vanilloid type 1 stimulation[J]. J Surg Res, 2018, 230:164-174. |
[23] | Luo W, Liu X, Sun W, et al. Toosendanin, a natural product, inhibited TGF-β1-induced epithelial-mesenchymal transition through ERK/Snail pathway[J]. Phytother Res, 2018, 32(10):2009-2020. |
[1] | XU Zhaoping, WANG Haofei. Expression of ZNF692 gene in clear cell renal cell carcinoma and its relationship with prognosis [J]. Journal of Diagnostics Concepts & Practice, 2020, 19(03): 292-296. |
[2] | WANG Shu, ZHANG Yunxiang, SUI Jingni, LU Jing, FAN Huiyong, WANG Chao, CHEN Bing.. Analysis of additional mutation pattern accompanied with CEBPA mutations in patients with the cytogenetically normal acute myeloid leukemia [J]. Journal of Diagnostics Concepts & Practice, 2017, 16(05): 498-503. |
[3] | CHEN Ying, LI Cui, YING Chunmei. Expression of T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain on T cells in patients with recurrent spontaneous abortion [J]. Journal of Diagnostics Concepts & Practice, 2017, 16(03): 273-276. |
[4] | . [J]. Journal of Diagnostics Concepts & Practice, 2016, 15(03): 283-286. |
[5] | . [J]. Journal of Diagnostics Concepts & Practice, 2014, 13(02): 176-181. |
[6] | . [J]. Journal of Diagnostics Concepts & Practice, 2013, 12(03): 315-319. |
[7] | . [J]. Journal of Diagnostics Concepts & Practice, 2013, 12(02): 189-193. |
[8] | . [J]. Journal of Diagnostics Concepts & Practice, 2013, 12(02): 185-188. |
[9] | . [J]. Journal of Diagnostics Concepts & Practice, 2013, 12(01): 90-94. |
[10] | . [J]. Journal of Diagnostics Concepts & Practice, 2012, 11(05): 498-501. |
[11] | . [J]. Journal of Diagnostics Concepts & Practice, 2012, 11(03): 252-257. |
[12] | . [J]. Journal of Diagnostics Concepts & Practice, 2011, 10(06): 540-544. |
[13] | . [J]. Journal of Diagnostics Concepts & Practice, 2011, 10(06): 527-530. |
[14] | . [J]. Journal of Diagnostics Concepts & Practice, 2011, 10(05): 434-439. |
[15] | . [J]. Journal of Diagnostics Concepts & Practice, 2011, 10(03): 239-242. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||