Journal of Diagnostics Concepts & Practice ›› 2019, Vol. 18 ›› Issue (06): 685-671.doi: 10.16150/j.1671-2870.2019.06.017
• Review article • Previous Articles Next Articles
Received:
2018-10-19
Online:
2019-12-25
Published:
2019-12-25
CLC Number:
技术 | 可检测的变异形式 | 定性或定量 | 优势 | 不足 | 灵敏度或 分辨率 | 检测时机 | 报告时 间(d) |
---|---|---|---|---|---|---|---|
二代测序 | 可同时检测已知和未知 突变 | 定性或半 定量 | 通量高,可同时检测 多个位点、多种突 变类型,节省样本 | 数据分析及报告解 读较为复杂 | 1%~5% | 初诊及治疗后 | 10~14 |
一代测序 | 多为已知突变,可检测点 突变、小片段插入缺失 以及拷贝数变异 | 定性 | 方便、快速、经济, 结果易于分析 | 灵敏度不高, 通量低 | 10%~20% | 初诊 | 3~5 |
PCR | 检测已知突变,包括单核 苷酸变异、小片段插入 或缺失、基因融合 | 定性或相 对定量 | 方便、快速、经济 | 通量低,1个反应检 测1个变异,最 多不超过5个 变异 | 0.1% | 初诊、动态监测、 检测微小残 留病 | 3~5 |
数字PCR | 检测已知突变,主要为 单核苷酸变异、小片段 插入或缺失或基因融合 | 绝对定量 | 高灵敏度,绝对定量 | 需要特殊设备, 价格高 | 0.01%~0.10% | 动态监测,检测微 小残留病 | 3~5 |
荧光原位杂交 | 检测已知突变,可检测大 片段插入、缺失及基因 融合、重排、扩增 | 定性 | 分子诊断金标准 | 通量低 | 20~100 kb | 初诊 | 5~7 |
核型分析 | 可同时检测已知和未知 染色体数目和结构变异 | 定性 | 经济,可以一次分析 全基因组 | 分辨率低, 灵敏度低 | 5~10 Mb | 初诊 | 7~14 |
染色体微阵列 | 可同时检测已知和未知 突变,多用于检测拷贝 数变化 | 定性 | 可以一次分析 全基因组 | 数据分析及报告 解读较为复杂 | 50~100 kb | 初诊 | 10~14 |
突变基因 | 与MDS疾病相关的典型的 突变类型和位置 | 发生频率 | 临床意义 | 生物学功能 |
---|---|---|---|---|
TET2 | 无义突变、移码突变、剪切位点 突变、错义突变(氨基酸1134~ 1444或1842~1921) | 20%~25% | 与正常核型相关,常见于CMML(40%~60%) | 表观遗传学修饰 |
DNMT3A | 无义突变、移码突变、剪切位点 突变、错义突变(氨基酸R882) | 12%~18% | 在AML中发生频率更高 | 表观遗传学修饰 |
ASXL1 | 无义突变、移码突变 | 15%~25% | MDS的独立预后因子,与不良预后相关 | 表观遗传学修饰 |
EZH2 | 无义突变、移码突变 | 5%~10% | MDS的独立预后因子,与不良预后相关 | 表观遗传学修饰 |
SF3B1 | 错义突变包括E622、Y623、 R625、N626、H662、T663、K666, K700E、I704、G740、G742、D781 | 20%~30% | 与RS增多特异性相关,特别是MDS-RS中更 常见(80%);可作为辅助诊断指标; 是独立预后因子,与预后良好相关 | RNA剪切因子 |
SRSF2 | 错义突变P95 | 10%~15% | 在CMML中更常见(40%),与不良预后相关 | RNA剪切因子 |
U2AF1 | 错义突变S34、Q157 | 8%~12% | 与不良预后相关 | RNA剪切因子 |
ZRSR2 | 无义突变、移码突变 | 5%~10% | 与不良预后相关 | RNA剪切因子 |
TP53 | 无义突变、移码突变、剪切位点 突变、任意位置的错义突变, 除了P47S和P72R | 8%~12% | 独立预后因子,与不良预后相关。多发生于复杂 核型(50%)和5q缺失(15%~20%);可能预测 复发及对来那度胺不敏感 | DNA损伤和修复 |
STAG2 | 无义突变、移码突变、剪切位点 突变 | 5%~10% | 与不良预后相关 | 姐妹染色体结合和分离 |
NRAS | 错义突变G12、G13、Q61 | 5%~10% | 与不良预后相关,特别是被预测为低风险的 MDS患者;多见于CMML和JMML (~15%) | 信号转导 |
CBL | 错义突变366~420 | <5% | 多见于CMML (10%~20%) 及JMML (15%) | 调节蛋白质降解及多个信 号通路,包括RAS通路 |
JAK2 | 错义突变V617F | <5% | 多见于伴RS及血小板增多的MDS或MPN, 与 SF3B1突变一起发生 | 信号转导 |
NF1 | 无义突变、移码突变、剪切位点 突变 | <5% | 多见于CMML(5%~10%)及JMML (15%) | 信号转导 |
RUNX1 | 无义突变、移码突变 | 10%~15% | 独立预后因子,与不良预后相关;在少见病例中 与遗传性肿瘤相关 | 转录因子 |
ETV6 | 无义突变、移码突变 | <5% | 独立预后因子,与不良预后相关;在少见病例中 与遗传性肿瘤相关 | 转录因子 |
IDH1 | 错义突变R132 | <5% | 多见于AML | 表观遗传学修饰 |
IDH2 | 错义突变R140Q、R172 | <5% | 多见于AML, 与不良预后相关 | 表观遗传学修饰 |
SETBP1 | 错义突变E858、T864、I865, D868、S869、G870 | <5% | 与疾病进展相关;多见于CMML(5%~10%) 和JMML(7%) | 表观遗传学修饰 |
PHF6 | 无义突变、移码突变、剪切位点 突变 | <5% | 多见于原始细胞增多,与生存没有相关性 | 表观遗传学修饰 |
BCOR | 无义突变、移码突变、剪切位点 突变、错义突变N1425 | <5% | 与不良预后相关, 多见于CMML(5%~10%) | 转录调节因子,表观遗传 学修饰 |
STAT3 | 错义突变(氨基酸584~674) | <5% | 发生于大颗粒淋巴细胞白血病相关的MDS, 与免疫性骨髓衰竭相关 | 信号转导,与JAK通路 相关 |
PPM1D | 无义突变、移码突变 | ~5% | 与MDS治疗相关,与TP53相关的不良预后 无关 | DNA损伤和修复 |
[1] |
Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia[J]. Blood,2016, 127(20):2391-2405.
doi: 10.1182/blood-2016-03-643544 URL |
[2] | Ma X. Epidemiology of myelodysplastic syndromes[J]. Am J Med, 2012, 125(7 Suppl):S2-S5. |
[3] |
Chen B, Zhao WL, Jin J, et al. Clinical and cytogenetic features of 508 Chinese patients with myelodysplastic syndrome and comparison with those in Western countries[J]. Leukemia, 2005, 19(5):767-775.
pmid: 15759035 |
[4] |
Irons RD, Wang X, Gross SA, et al. Prevalence of MDS subtypes in Shanghai, China: a comparison of the World Health Organization and French American British classifications[J]. Leuk Res, 2006, 30(7):769-775.
doi: 10.1016/j.leukres.2005.10.018 URL |
[5] |
Steensma DP, Bejar R, Jaiswal S, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes[J]. Blood, 2015, 126(1):9-16.
doi: 10.1182/blood-2015-03-631747 pmid: 25931582 |
[6] | NCCN guideline version 2. 2019 Myelodysplastic syndromes[DB/OL]. https://www.nccn.org/professionals/physician_gls/pdf/mds.pdf |
[7] |
Bejar R, Stevenson K, Abdel-Wahab O, et al. Clinical effect of point mutations in myelodysplastic syndromes[J]. N Engl J Med, 2011, 364(26):2496-2506.
doi: 10.1056/NEJMoa1013343 URL |
[8] |
Malcovati L, Papaemmanuil E, Bowen DT, et al. Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms[J]. Blood, 2011, 118(24):6239-6246.
doi: 10.1182/blood-2011-09-377275 pmid: 21998214 |
[9] |
Kohlmann A, Bacher U, Schnittger S, et al. Perspective on how to approach molecular diagnostics in acute myeloid leukemia and myelodysplastic syndromes in the era of next-generation sequencing[J]. Leuk Lymphoma, 2014, 55(8):1725-1734.
doi: 10.3109/10428194.2013.856427 URL |
[10] |
Bejar R, Stevenson KE, Caughey BA, et al. Validation of a prognostic model and the impact of mutations in patients with lower-risk myelodysplastic syndromes[J]. J Clin Oncol, 2012, 30(27):3376-3382.
doi: 10.1200/JCO.2011.40.7379 URL |
[11] |
Greenberg PL, Tuechler H, Schanz J, et al. Revised international prognostic scoring system for myelodysplastic syndromes[J]. Blood, 2012, 120(12):2454-2465.
doi: 10.1182/blood-2012-03-420489 pmid: 22740453 |
[12] | Damm F, Chesnais V, Nagata Y, et al. BCOR and BCORL1 mutations in myelodysplastic syndromes and related disorders[J]. Blood, 2013, 122(18):3169-3177. |
[13] |
Papaemmanuil E, Gerstung M, Malcovati L, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes[J]. Blood, 2013, 122(22):3616-3627.
doi: 10.1182/blood-2013-08-518886 pmid: 24030381 |
[14] | 宋陆茜, 常春康. 二代测序技术在骨髓增生异常综合征诊治中的临床应用[J]. 诊断学理论与实践, 2016, 15(6):556-559. |
[15] | Bejar R, Steensma DP. Recent developments in myelodysplastic syndromes[J]. Blood, 2014, 124(18):2793-2803. |
[16] | Bejar R, Lord A, Stevenson K, et al. TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients[J]. Blood, 2014, 124(17):2705-2712. |
[17] |
Klimek VM. It dices, it splices![J]. Blood, 2011, 118(24):6237-6238.
doi: 10.1182/blood-2011-10-386540 URL |
[18] |
Lindsley RC, Saber W, Mar BG, et al. Prognostic mutations in myelodysplastic syndrome after stem-cell transplantation[J]. N Engl J Med, 2017, 376(6):536-547.
doi: 10.1056/NEJMoa1611604 URL |
[19] |
Jädersten M, Saft L, Smith A, et al. TP53 mutations in low-risk myelodysplastic syndromes with del(5q) predict disease progression[J]. J Clin Oncol, 2011, 29(15):1971-1979.
doi: 10.1200/JCO.2010.31.8576 pmid: 21519010 |
[20] |
Haase D, Stevenson KE, Neuberg D, et al. TP53 mutation status divides myelodysplastic syndromes with complex karyotypes into distinct prognostic subgroups[J]. Leukemia, 2019, 33(7):1747-1758.
doi: 10.1038/s41375-018-0351-2 URL |
[21] |
Mallo M, Del Rey M, Ibáñez M, et al. Response to lenalidomide in myelodysplastic syndromes with del(5q): influence of cytogenetics and mutations[J]. Br J Haematol, 2013, 162(1):74-86.
doi: 10.1111/bjh.12354 URL |
[22] |
Xu J, Reumers J, Couceiro JR, et al. Gain of function of mutant p53 by coaggregation with multiple tumor suppressors[J]. Nat Chem Biol, 2011, 7(5):285-295.
doi: 10.1038/nchembio.546 URL |
[23] | McClure RF, Ewalt MD, Crow J, et al. Clinical significance of DNA variants in chronic myeloid neoplasms: A report of the association for molecular pathology[J]. J Mol Diagn, 2018, 20(6):717-737. |
[24] |
Jennings LJ, Arcila ME, Corless C, et al. Guidelines for validation of next-generation sequencing-based oncology panels: A joint consensus recommendation of the Associa-tion for Molecular Pathology and College of American Pathologists[J]. J Mol Diagn, 2017, 19(3):341-365.
doi: 10.1016/j.jmoldx.2017.01.011 URL |
[25] |
Roy S, Coldren C, Karunamurthy A, et al. Standards and guidelines for validating next-generation sequencing bioinformatics pipelines: A joint recommendation of the Association for Molecular Pathology and the College of American Pathologists[J]. J Mol Diagn, 2018, 20(1):4-27.
doi: 10.1016/j.jmoldx.2017.11.003 URL |
[26] |
Li MM, Datto M, Duncavage EJ, et al. Standards and Guidelines for the interpretation and reporting of sequence variants in cancer: A joint consensus recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists[J]. J Mol Diagn, 2017, 19(1):4-23.
doi: 10.1016/j.jmoldx.2016.10.002 URL |
[27] |
Aziz N, Zhao Q, Bry L, et al. College of American Patho-logists' laboratory standards for next-generation sequen-cing clinical tests[J]. Arch Pathol Lab Med, 2015, 139(4):481-493.
doi: 10.5858/arpa.2014-0250-CP URL |
[28] | 中国抗癌协会血液肿瘤专业委员会,中华医学会血液学分会, 中华医学会病理学分会.二代测序技术在血液肿瘤中的应用中国专家共识(2018年版)[J]. 中华血液学杂志, 2018, 39(11):881-886. |
[1] | . [J]. Journal of Diagnostics Concepts & Practice, 2020, 19(02): 195-198. |
[2] | . [J]. Journal of Diagnostics Concepts & Practice, 2017, 16(05): 472-476. |
[3] | . [J]. Journal of Diagnostics Concepts & Practice, 2017, 16(05): 468-471. |
[4] | CAO Yafeng, WANG Jing, GU Jun, LU Hongyu, XUN Jie, LIU Yuanfang, WANG Yan, WANG Jin, CHEN Yu, CHEN Yubao, LI Jiaming, HAO Jie, MI Jianqing, CHEN Mei. Analysis of peripheral neuropathy following treatment with bortezomib in 114 newly-diagnosed multiple myeloma patients [J]. Journal of Diagnostics Concepts & Practice, 2017, 16(05): 492-497. |
[5] | . [J]. Journal of Diagnostics Concepts & Practice, 2017, 16(05): 455-459. |
[6] | . [J]. Journal of Diagnostics Concepts & Practice, 2016, 15(06): 545-549. |
[7] | . [J]. Journal of Diagnostics Concepts & Practice, 2016, 15(06): 556-560. |
[8] | . [J]. Journal of Diagnostics Concepts & Practice, 2016, 15(06): 561-566. |
[9] | . [J]. Journal of Diagnostics Concepts & Practice, 2016, 15(06): 567-572. |
[10] | . [J]. Journal of Diagnostics Concepts & Practice, 2016, 15(06): 573-577. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||