Journal of Diagnostics Concepts & Practice ›› 2022, Vol. 21 ›› Issue (03): 385-389.doi: 10.16150/j.1671-2870.2022.03.016
• Original articles • Previous Articles Next Articles
HUANG Juana, ZHU Xiaoleia, LI Xiaob, CHEN Kemina, YAN Fuhuaa, XU Xueqina()
Received:
2022-06-13
Online:
2022-06-25
Published:
2022-08-17
Contact:
XU Xueqin
E-mail:xxq11550@rjh.com.cn
CLC Number:
HUANG Juan, ZHU Xiaolei, LI Xiao, CHEN Kemin, YAN Fuhua, XU Xueqin. Study on blood oxygen level-dependent magnetic resonance imaging for the assessment of early renal hypoxia in chronic kidney disease[J]. Journal of Diagnostics Concepts & Practice, 2022, 21(03): 385-389.
分组 | 肾皮质R2*值 | 肾髓质R2*值 | P值 |
---|---|---|---|
对照组(n=52) | 12.69±1.09 | 18.17±2.38 | <0.001 |
CKD组(n=52) | 12.91±2.06 | 16.40±2.47 | <0.001 |
CKD 1期(n=13) | 12.47±1.57 | 16.55±2.12 | <0.001 |
CKD 2期(n=11) | 12.89±2.30 | 17.38±2.51 | <0.001 |
CKD 3期(n=10) | 13.80±2.67 | 16.91±1.78 | 0.001 |
CKD 4期(n=9) | 13.37±1.69 | 16.48±2.95 | 0.017 |
CKD 5期(n=9) | 12.81±2.66 | 13.99±2.21 | 0.354 |
[1] | Ene-Iordache B, Perico N, Bikbov B, et al. Chronic kidney disease and cardiovascular risk in six regions of the world (ISN-KDDC): a cross-sectional study[J]. Lancet Glob Health, 2016, 4(5):e307-e319. |
[2] |
Niendorf T, Pohlmann A, Arakelyan K, et al. How bold is blood oxygenation level-dependent (BOLD) magnetic reso-nance imaging of the kidney? Opportunities, challenges and future directions[J]. Acta Physiol (Oxf), 2015, 213(1):19-38.
doi: 10.1111/apha.12393 pmid: 25204811 |
[3] |
Fine LG, Norman JT. Chronic hypoxia as a mechanism of progression of chronic kidney diseases: from hypothesis to novel therapeutics[J]. Kidney Int, 2008, 74(7):867-872.
doi: 10.1038/ki.2008.350 URL |
[4] |
Michaely HJ, Metzger L, Haneder S, et al. Renal BOLD-MRI does not reflect renal function in chronic kidney disease[J]. Kidney Int, 2012, 81(7):684-689.
doi: 10.1038/ki.2011.455 pmid: 22237750 |
[5] |
Yin WJ, Liu F, Li XM, et al. Noninvasive evaluation of renal oxygenation in diabetic nephropathy by BOLD-MRI[J]. Eur J Radiol, 2012, 81(7):1426-1431.
doi: 10.1016/j.ejrad.2011.03.045 URL |
[6] |
Inoue T, Kozawa E, Okada H, et al. Noninvasive evaluation of kidney hypoxia and fibrosis using magnetic resonance imaging[J]. J Am Soc Nephrol, 2011, 22(8):1429-1434.
doi: 10.1681/ASN.2010111143 URL |
[7] |
Khatir DS, Pedersen M, Jespersen B, et al. Evaluation of renal blood flow and oxygenation in CKD using magnetic resonance imaging[J]. Am J Kidney Dis, 2015, 66(3):402-411.
doi: 10.1053/j.ajkd.2014.11.022 pmid: 25618188 |
[8] | National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification[J]. Am J Kidney Dis, 2002, 39(2 Suppl 1):S1-266. |
[9] |
Li LP, Halter S, Prasad PV. Blood oxygen level-dependent MR imaging of the kidneys[J]. Magn Reson Imaging Clin N Am, 2008, 16(4):613-625, viii.
doi: 10.1016/j.mric.2008.07.008 URL |
[10] |
Zhang R, Wang Y, Chen F, et al. Noninvasive evaluation of renal oxygenation in primary nephrotic syndrome with blood oxygen level dependent magnetic resonance ima-ging: Initial experience[J]. J Int Med Res, 2015, 43(3):356-363.
doi: 10.1177/0300060515579117 pmid: 25947644 |
[11] |
Piskunowicz M, Hofmann L, Zuercher E, et al. A new technique with high reproducibility to estimate renal oxygenation using BOLD-MRI in chronic kidney disease[J]. Magn Reson Imaging, 2015, 33(3):253-261.
doi: 10.1016/j.mri.2014.12.002 pmid: 25523609 |
[12] |
Khatir DS, Pedersen M, Jespersen B, et al. Reproducibi-lity of MRI renal artery blood flow and BOLD measurements in patients with chronic kidney disease and healthy controls[J]. J Magn Reson Imaging, 2014, 40(5):1091-1098.
doi: 10.1002/jmri.24446 pmid: 24470349 |
[13] |
Li X, Xu X, Zhang Q, et al. Diffusion weighted imaging and blood oxygen level-dependent MR imaging of kidneys in patients with lupus nephritis[J]. J Transl Med, 2014, 12:295.
doi: 10.1186/s12967-014-0295-x URL |
[14] |
Thoeny HC, Zumstein D, Simon-Zoula S, et al. Functio-nal evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience[J]. Radiology, 2006, 241(3):812-821.
doi: 10.1148/radiol.2413060103 URL |
[15] |
Luo F, Liao Y, Cui K, et al. Noninvasive evaluation of renal oxygenation in children with chronic kidney disease using blood-oxygen-level-dependent magnetic resonance imaging[J]. Pediatr Radiol, 2020, 50(6):848-854.
doi: 10.1007/s00247-020-04630-3 URL |
[16] |
Kang DH, Kanellis J, Hugo C, et al. Role of the microvascular endothelium in progressive renal disease[J]. J Am Soc Nephrol, 2002, 13(3):806-816.
doi: 10.1681/ASN.V133806 URL |
[17] | Prasad PV. Evaluation of intra-renal oxygenation by BOLD MRI[J]. Nephron Clin Pract, 2006, 103(2):c58-c65. |
[18] | Eckardt KU, Bernhardt WM, Weidemann A, et al. Role of hypoxia in the pathogenesis of renal disease[J]. Kidney Int Suppl, 2005(99):S46-S51. |
[19] | Nangaku M. Hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure[J]. Nephron Exp Nephrol, 2004, 98(1):e8-e12. |
[20] |
Nangaku M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure[J]. J Am Soc Nephrol, 2006, 17(1):17-25.
doi: 10.1681/ASN.2005070757 URL |
[21] |
Rossi C, Artunc F, Martirosian P, et al. Histogram analysis of renal arterial spin labeling perfusion data reveals differences between volunteers and patients with mild chronic kidney disease[J]. Invest Radiol, 2012, 47(8):490-496.
doi: 10.1097/RLI.0b013e318257063a URL |
[22] |
Gloviczki ML, Glockner JF, Crane JA, et al. Blood oxygen level-dependent magnetic resonance imaging identifies cortical hypoxia in severe renovascular disease[J]. Hypertension, 2011, 58(6):1066-1072.
doi: 10.1161/HYPERTENSIONAHA.111.171405 pmid: 22042812 |
[23] |
Neugarten J. Renal BOLD-MRI and assessment for renal hypoxia[J]. Kidney Int, 2012, 81(7):613-614.
doi: 10.1038/ki.2011.462 pmid: 22419042 |
[24] |
Pei XL, Xie JX, Liu JY, et al. A preliminary study of blood-oxygen-level-dependent MRI in patients with chro-nic kidney disease[J]. Magn Reson Imaging, 2012, 30(3):330-335.
doi: 10.1016/j.mri.2011.10.003 URL |
[1] | QIAN Ying, MA Xiaobo, GAO Chenni, CHEN Zijin, MA Jun, YU Haijin, ZHANG Wen, CHEN Xiaonong. The diagnostic efficiency and application value of fracture risk assessment tools in maintenance hemodialysis patients [J]. Journal of Diagnostics Concepts & Practice, 2023, 22(01): 50-57. |
[2] | RUI Wenbin, XU Da, ZHU Yu, WU Yuxuan, WANG Haofei, WANG Chenghe, YUAN Fei. Expression of HIF-1α and its relationship with prognosis in papillary renal cell carcinoma [J]. Journal of Diagnostics Concepts & Practice, 2021, 20(03): 265-370. |
[3] | LIN Yuxuan, ZHAO Yanhua, WANG Xiaojing. Risk factors for hypoxia during performing gastroscopy with propofol sedation [J]. Journal of Diagnostics Concepts & Practice, 2020, 19(06): 594-599. |
[4] | WANG Yuanyuan, FAN Qiuling. Clinical value of serum procalcitonin in patients of chronic kidney disease with bacterial infection [J]. Journal of Diagnostics Concepts & Practice, 2019, 18(03): 353-359. |
[5] | LIN Anhua, WANG Chenxiu, HUO Yanan, CHEN Zhixiong, SONG Wei, LIU Jingdong, HU Yaqin. Correlation of blood pressure level with development and progression of chronic kidney disease in Chinese community diabetes patients [J]. Journal of Diagnostics Concepts & Practice, 2017, 16(02): 178-182. |
[6] | . [J]. Journal of Diagnostics Concepts & Practice, 2016, 15(04): 405-409. |
[7] | . [J]. Journal of Diagnostics Concepts & Practice, 2014, 13(03): 312-315. |
[8] | . [J]. Journal of Diagnostics Concepts & Practice, 2013, 12(05): 532-536. |
[9] | . [J]. Journal of Diagnostics Concepts & Practice, 2012, 11(02): 136-140. |
[10] | . [J]. Journal of Diagnostics Concepts & Practice, 2008, 7(02): 155-160. |
[11] | . [J]. Journal of Diagnostics Concepts & Practice, 2008, 7(02): 147-150. |
[12] | . [J]. Journal of Diagnostics Concepts & Practice, 2007, 6(06): 519-524. |
[13] | . [J]. Journal of Diagnostics Concepts & Practice, 2006, 5(06): 503-506. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||