[1] |
RUSSO V, LOVATO L, LIGABUE G. Cardiac MRI: technical basis[J]. Radiol Med, 2020, 125(11):1040-1055.
|
[2] |
DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.
|
[3] |
DESHMANE A, GULANI V, GRISWOLD M A, et al. Parallel MR imaging[J]. J Magn Reson Imaging, 2012, 36(1):55-72.
doi: 10.1002/jmri.23639
pmid: 22696125
|
[4] |
郭效宾, 柯腾飞, 刘一帆, 等. 磁共振压缩感知技术在肿瘤影像检查中应用[J]. 放射学实践, 2020, 35(12):1635-1638.
|
|
GUO X B, KE T F, LIU Y F, et al. The application of magnetic resonance compressed sensing technology in tumor imaging examination.[J] Radiol Pract, 2020, 35(12): 1635-8.
|
[5] |
LIBERMAN G, SOLOMON E, LUSTIG M, et al. Multiple-coil k-space interpolation enhances resolution in single-shot spatiotemporal MRI[J]. Magn Reson Med, 2018, 79(2):796-805.
doi: 10.1002/mrm.26731
pmid: 28556180
|
[6] |
严福华. 深度学习MRI重建算法的临床应用和发展前景[J]. 磁共振成像, 2023, 14(5):8-10.
|
|
YAN F H. The clinical application and development prospect of deep learning MRI reconstruction algorithm[J]. Chin J Magn Reson Imag, 2023, 14(5):8-10.
|
[7] |
刘高平, 曲太平, 许强, 等. 基于深度学习重建常规头部2D T1WI超分辨率图像质量[J]. 中国医学影像技术, 2022, 38(3): 326-331.
|
|
LIU G P, QU T P, XU Q, et al. Imaging quality of super-resolution reconstruction of conventional head 2D T1WI based on deep learning[J]. Chin J Med Imag Technol, 2022, 38(3): 326-331.
|
[8] |
宣锴, 王乾. 面向磁共振图像重建的k空间降采样优化[J]. 模式识别与人工智能, 2021, 34(4):367-374.
doi: 10.16451/j.cnki.issn1003-6059.202104009
|
|
XUAN K, WANG Q. Optimizing K-space subsampling pattern toward MRI reconstruction[J]. Pattern Recognit Artif Intell, 2021, 34(4):367-374.
|
[9] |
LEBEL R M. Performance characterization of a novel deep learning-based MR image reconstruction pipeline[EB/OL]. [2023-05-13]. https://www.baidu.com/link?url=XDD_QK0-r2gYithJyjWW_vbNytceiRHd9g_IMsUUeNIYFyIephWTH9uhbAyTeOTG&wd=&eqid=d3683c33001cda870000000566456e76.
|
[10] |
KIM M, KIM H S, KIM H J, et al. Thin-slice pituitary MRI with deep learning-based reconstruction: diagnostic performance in a postoperative setting[J]. Radiology, 2021, 298(1):114-122.
doi: 10.1148/radiol.2020200723
pmid: 33141001
|
[11] |
YASAKA K, TANISHIMA T, OHTAKE Y, et al. Deep learning reconstruction for 1.5 T cervical spine MRI: effect on interobserver agreement in the evaluation of degenerative changes[J]. Eur Radiol, 2022, 32(9):6118-6125.
|
[12] |
SPRAWLS P. Magnetic resonance imaging: principles, methods, and techniques[M]. Medical Physics Publishing Madison, 2000.
|
[13] |
周楠, 花立春, 刘杰, 等. 深度学习重建法在MRI重建中的应用进展[J]. 中国医疗设备, 2023, 38(12):165-169.
|
|
ZHOU N, HUA L C, LIU J, et al. Application of deep learning reconstruction in MRI reconstruction[J] China Med Devices, 2023, 38(12):165-169.
|
[14] |
XIE Y, TAO H, LI X, et al. Prospective comparison of standard and deep learning-reconstructed turbo spin-echo MRI of the shoulder[J]. Radiology, 2024, 310(1):e231405.
|
[15] |
LEE K L, KESSLER D A, DEZONIE S, et al. Assessment of deep learning-based reconstruction on T2-weighted and diffusion-weighted prostate MRI image quality[J]. Eur J Radiol, 2023, 166:111017.
|
[16] |
ZERUNIAN M, PUCCIARELLI F, CARUSO D, et al. Artificial intelligence based image quality enhancement in liver MRI: a quantitative and qualitative evaluation[J]. Radiol Med, 2022, 127(10):1098-1105.
doi: 10.1007/s11547-022-01539-9
pmid: 36070066
|