Journal of Diagnostics Concepts & Practice ›› 2016, Vol. 15 ›› Issue (05): 528-531.doi: 10.16150/j.1671-2870.2016.05.020
• Review articles • Previous Articles Next Articles
Received:
2016-07-14
Online:
2016-10-25
Published:
2022-07-27
CLC Number:
[1] Woodhams R, Matsunaga K, Iwabuchi K, et al.Diffusion-weighted imaging of malignant breast tumors: the usefulness of apparent diffusion coefficient(ADC) value and ADC map for the detection of malignant breast tumors and evaluation of cancer extension[J]. J Comput Assist Tomogr,2005,29(5):644-649. [2] Bammer R.Basic principles of diffusion-weighted ima-ging[J]. Eur J Radiol,2003,45(3):169-184. [3] 张静, 安宁豫, 程流泉, 等. 1.5TMR乳腺扩散加权成像b值的优化[J]. 中华放射学杂志,2011,45(10):937-941. [4] Pereira FP, Martins G, Figueiredo E, et al.Assessment of breast lesions with diffusion-weighted MRI: comparing the use of different b values[J]. Am J Roentgenol,2009, 193(4):1030-1035. [5] Dorrius MD, Dijkstra H, Oudkerk M, et al.Effect of b value and pre-admission of contrast on diagnostic accuracy of 1.5-T breast DWI: a systematic review and meta-analysis[J]. Eur Radiol,2014,24(11):2835-2847. [6] Chen X, Li WL, Zhang YL, et al.Meta-analysis of quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesions[J]. BMC Cancer,2010,10:693. [7] 刘敏, 刘万花, 王瑞, 等. 3.0T MR扩散加权成像不同b值条件下乳腺病灶信噪比及信号强度比的变化[J]. 中华放射学杂志,2014,48(3):189-192. [8] Park MJ, Cha ES, Kang BJ, et al.The role of diffusion-weighted imaging and the apparent diffusion coefficient (ADC) values for breast tumors[J]. Korean J Radiol,2007, 8(5):390-396. [9] Cipolla V, Santucci D, Guerrieri D, et al.Correlation between 3T apparent diffusion coefficient values and gra-ding of invasive breast carcinoma[J]. Eur J Radiol,2014, 83(12):2144-2150. [10] 邓丹琼, 涂蓉, 尤小光. 磁共振扩散加权成像ADC值与乳腺癌病理组织分级的相关性研究[J]. 临床放射学杂志,2013,32(10):1428-1431. [11] Park SH, Choi HY, Hahn SY.Correlations between apparent diffusion coefficient values of invasive ductal carcinoma and pathologic factors on diffusion-weighted MRI at 3.0 Tesla[J]. J Magn Reson Imaging,2015,41(1):175-182. [12] Jeh SK, Kim SH, Kim HS, et al.Correlation of the apparent diffusion coefficient value and dynamic magnetic resonance imaging findings with prognostic factors in invasive ductal carcinoma[J]. J Magn Reson Imaging,2011, 33(1):102-109. [13] Wu LM, Hu JN, Gu HY, et al.Can diffusion-weighted MR imaging and contrast-enhanced MR imaging precisely evaluate and predict pathological response to neoadjuvant chemotherapy in patients with breast cancer?[J]. Breast Cancer Res Treat,2012,135(1):17-28. [14] Chen JH, Su MY.Clinical application of magnetic resonance imaging in management of breast cancer patients receiving neoadjuvant chemotherapy[J]. Biomed Res Int,2013,2013:348167. [15] Park SH, Moon WK, Cho N, et al.Diffusion-weighted MR imaging: pretreatment prediction of response to neoadjuvant chemotherapy in patients with breast cancer[J]. Radiology,2010,257(1):56-63. [16] Prevos R, Smidt ML, Tjan-Heijnen VC, et al.Pre-treatment differences and early response monitoring of neoadjuvant chemotherapy in breast cancer patients using magnetic resonance imaging: a systematic review[J]. Eur Radiol,2012,22(12):2607-2616. [17] Le Bihan D, Breton E, Lallemand D, et al.Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging[J]. Radiology,1988,168(2):497-505. [18] Ichikawa S, Motosugi U, Ichikawa T, et al.Intravoxel incoherent motion imaging of focal hepatic lesions[J]. J Magn Reson Imaging,2013,37(6):1371-1376. [19] Liu C, Wang K, Chan Q, et al. Intravoxel incoherent motion MR imaging for breast lesions: comparison and correlation with pharmacokinetic evaluation from dyna-mic contrast-enhanced MR imaging[J/OL]. Eur Radiol,2016-02-10[2016-07-14].https://www.ncbi.nlm.nih.gov/pubmed/26863896. [20] 王庆军, 李小娟, 张静, 等. 磁共振体素内不相干运动对于肿块样乳腺良恶性病变的诊断价值[J]. 中华临床医师杂志,2014, 8(19):3238-3443. [21] Liu C, Liang C, Liu Z, et al.Intravoxel incoherent motion (IVIM) in evaluation of breast lesions: comparison with conventional DWI[J]. Eur J Radiol,2013,82(12):e782-e789. [22] Cho GY, Moy L, Kim SG, et al.Evaluation of breast cancer using intravoxel incoherent motion (IVIM) histogram analysis: comparison with malignant status, histological subtype, and molecular prognostic factors[J]. Eur Radiol,2016,26(8):2547-2558. [23] Kim Y, Ko K, Kim D, et al.Intravoxel incoherent motion diffusion-weighted MR imaging of breast cancer: association with histopathological features and subtypes[J]. Br J Radiol,2016,89(1063):20160140. [24] Che S, Zhao X, Ou Y, et al.Role of the intravoxel incoherent motion diffusion weighted imaging in the pre-treatment prediction and early response monitoring to neoadjuvant chemotherapy in locally advanced breast cancer[J]. Medicine (Baltimore),2016,95(4):e2420. [25] Jensen JH, Helpern JA, Ramani A, et al.Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging[J]. Magn Reson Med,2005,53(6):1432-1440. [26] Nogueira L, Brandão S, Matos E, et al Application of the diffusion kurtosis model for the study of breast lesions[J]. Eur Radiol,2014,24(6):1197-1203. [27] Wu D, Li G, Zhang J, et al.Characterization of breast tumors using diffusion kurtosis imaging (DKI)[J]. PLoS One,2014,9(11):e113240. [28] Sun K, Chen X, Chai W, et al.Breast Cancer: Diffusion Kurtosis MR Imaging-Diagnostic Accuracy and Correlation with Clinical-Pathologic Factors[J]. Radiology,2015, 277(1):46-55. [29] Chen Y, Ren W, Zheng D, et al.Diffusion kurtosis ima-ging predicts neoadjuvant chemotherapy responses within 4 days in advanced nasopharyngeal carcinoma patients[J]. J Magn Reson Imaging,2015,42(5):1354-1361. [30] Bogner W, Pinker-Domenig K, Bickel H, et al.Readout-segmented echo-planar imaging improves the diagnostic performance of diffusion-weighted MR breast examinations at 3.0 T[J]. Radiology,2012,263(1):64-76. |
[1] | HOU Xiaosa, YANG Zhenjiang. Risk factors of non-sentinel lymph node metastasis in breast cancer patients with positive sentinel lymph nodes [J]. Journal of Diagnostics Concepts & Practice, 2021, 20(03): 284-289. |
[2] | . [J]. Journal of Diagnostics Concepts & Practice, 2021, 20(03): 294-297. |
[3] | LI Weiwei, WU Ying, ZHOU Wei, ZHAN Weiwei, ZHOU Qinghua, TAO Lingling, YANG Yanwen. The diagnostic value of smart three-dimensional superb microvascular imaging in differentiating benign and malignant breast lesions of BI-RADS 4 [J]. Journal of Diagnostics Concepts & Practice, 2020, 19(06): 583-587. |
[4] | YAN Bing, WANG Haifei, CAO Yunyun, NIU Jianmei. Comparative analysis of ultrasonographic features and clinicopathological types for mucinous breast carcinoma and analysis of the causes for misdiagnosis [J]. Journal of Diagnostics Concepts & Practice, 2020, 19(04): 386-390. |
[5] | . [J]. Journal of Diagnostics Concepts & Practice, 2020, 19(03): 325-328. |
[6] | LI Weiwei, ZHAN Weiwei, ZHOU Wei, TAO Lingling, WANG Yi, FAN Jinfang, FEI Yuanxin, KUANG Lijun, XU Wenying. The diagnostic value of smart three-dimensional superb microvascular imaging in detecting blood flow distribution pattern of breast lesion [J]. Journal of Diagnostics Concepts & Practice, 2019, 18(2): 139-143. |
[7] | . [J]. Journal of Diagnostics Concepts & Practice, 2019, 18(2): 223-227. |
[8] | WANG Shunli, DENG Shuangshuang, GAO Hui, XIAO Tianyu, GAO Jinli. Analysis of clinicopathological characteristics of breast encapsulated papillarycarcinoma [J]. Journal of Diagnostics Concepts & Practice, 2019, 18(1): 89-92. |
[9] | YAO Jiejie, ZHU Ying, ZHAN Weiwei, CHEN Xiaosong, FEI Xiaochun. Correlation of sonographic features of non-mass ductal carcinoma in situ with clinicopathological findings and biomarkers [J]. Journal of Diagnostics Concepts & Practice, 2018, 17(06): 676-681. |
[10] | . [J]. Journal of Diagnostics Concepts & Practice, 2018, 17(02): 225-230. |
[11] | WU Yan, DING Peifen, GU Yan, GUO Shanyu, DAI Qiancheng, ZHANG Wei. Expression and analysis of HIC-1 and HMMR in breast cancer [J]. Journal of Diagnostics Concepts & Practice, 2017, 16(01): 73-78. |
[12] | DA Qian, WU Dongmei, XU Haimin, WANG Chaofu. Clinicopathological characteristics of adenoid cystic carcinoma in breast: report of 10 cases and review of literature [J]. Journal of Diagnostics Concepts & Practice, 2016, 15(06): 608-613. |
[13] | PEI Wenjiang, ZHAO Feng, WU Yan, ZHONG Ming, GAO Hang, LI Yousheng, GU Yan, GUO Shanyu, DAI Qiancheng, ZHANG Wei. Effect of hypermethylated in cancer 1-downstream-regulated gene HMMR on cell migration and invasion in breast cancer: an in vitro study on breast cancer cell line MDA-MB-231 [J]. Journal of Diagnostics Concepts & Practice, 2018, 17(01): 70-75. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||