Journal of Diagnostics Concepts & Practice ›› 2024, Vol. 23 ›› Issue (03): 263-269.doi: 10.16150/j.1671-2870.2024.03.003
• Expert forum • Previous Articles Next Articles
Received:
2024-04-23
Accepted:
2024-05-23
Online:
2024-06-25
Published:
2024-06-25
Contact:
Lü Liangjing
E-mail:lu_liangjing@163.com
CLC Number:
WANG Yiyang, LÜ Liangjing. Potential biomarkers for prediction of the efficacy and safety of CAR T cell treatment in systemic lupus erythematosus[J]. Journal of Diagnostics Concepts & Practice, 2024, 23(03): 263-269.
[1] | BAKER D J, ARANY Z, BAUR J A, et al. CAR T therapy beyond cancer: the evolution of a living drug[J]. Nature, 2023, 619(7971):707-715. |
[2] |
MALDINI C R, ELLIS G I, RILEY J L. CAR T cells for infection, autoimmunity and allotransplantation[J]. Nat Rev Immunol, 2018, 18(10):605-616.
doi: 10.1038/s41577-018-0042-2 pmid: 30046149 |
[3] |
DRIVER C B, ISHIMORI M, WEISMAN M H. The B cell in systemic lupus erythaematosus: a rational target for more effective therapy[J]. Ann Rheum Dis, 2008, 67(10):1374-1381.
pmid: 17720723 |
[4] | MOUGIAKAKOS D, KRÖNKE G, VÖLKL S, et al. CD19-Targeted CAR T Cells in Refractory Systemic Lupus Erythematosus[J]. N Engl J Med, 2021, 385(6):567-569. |
[5] |
MACKENSEN A, MÜLLER F, MOUGIAKAKOS D, et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus[J]. Nat Med, 2022, 28(10):2124-2132.
doi: 10.1038/s41591-022-02017-5 pmid: 36109639 |
[6] | MÜLLER F, TAUBMANN J, BUCCI L, et al. CD19 CAR T-Cell Therapy in Autoimmune Disease - A Case Series with Follow-up[J]. N Engl J Med, 2024, 390(8):687-700. |
[7] |
WANG Z, HAN W. Biomarkers of cytokine release syndrome and neurotoxicity related to CAR-T cell therapy[J]. Biomark Res, 2018, 6:4.
doi: 10.1186/s40364-018-0116-0 pmid: 29387417 |
[8] | TAN J Y, LOW M H, CHEN Y, et al. CAR T Cell Therapy in Hematological Malignancies: Implications of the Tumor Microenvironment and Biomarkers on Efficacy and Toxicity[J]. Int J Mol Sci, 2022, 23(13):6931. |
[9] | LEVSTEK L, JANŽIČ L, IHAN A, et al. Biomarkers for prediction of CAR T therapy outcomes: current and future perspectives[J]. Front Immunol, 2024, 15:1378944. |
[10] |
LARSON R C, MAUS M V. Recent advances and discoveries in the mechanisms and functions of CAR T cells[J]. Nat Rev Cancer, 2021, 21(3):145-161.
doi: 10.1038/s41568-020-00323-z pmid: 33483715 |
[11] | LABANIEH L, MACKALL C L. CAR immune cells: design principles, resistance and the next generation[J]. Nature, 2023, 614(7949):635-648. |
[12] |
XIAO X, HUANG S, CHEN S, et al. Mechanisms of cytokine release syndrome and neurotoxicity of CAR T-cell therapy and associated prevention and management strategies[J]. J Exp Clin Cancer Res, 2021, 40(1):367.
doi: 10.1186/s13046-021-02148-6 pmid: 34794490 |
[13] | FLUGEL C L, MAJZNER R G, KRENCIUTE G, et al. Overcoming on-target, off-tumour toxicity of CAR T cell therapy for solid tumours[J]. Nat Rev Clin Oncol, 2023, 20(1):49-62. |
[14] |
SCHUBERT M L, SCHMITT M, WANG L, et al. Side-effect management of chimeric antigen receptor (CAR) T-cell therapy[J]. Ann Oncol, 2021, 32(1):34-48.
doi: 10.1016/j.annonc.2020.10.478 pmid: 33098993 |
[15] | ARBITMAN L, FURIE R, VASHISTHA H. B cell-targeted therapies in systemic lupus erythematosus[J]. J Autoimmun, 2022, 132:102873. |
[16] | KANSAL R, RICHARDSON N, NEELI I, et al. Sustained B cell depletion by CD19-targeted CAR T cells is a highly effective treatment for murine lupus[J]. Sci Transl Med, 2019, 11(482):eaav1648. |
[17] | JIN X, XU Q, PU C, et al. Therapeutic efficacy of anti-CD19 CAR-T cells in a mouse model of systemic lupus erythematosus[J]. Cell Mol Immunol, 2021, 18(8):1896-1903. |
[18] | WANG W, HE S, ZHANG W, et al. BCMA-CD19 compound CAR T cells for systemic lupus erythematosus: a phase 1 open-label clinical trial[J/OL]. Ann Rheum Dis.[2024-04-23]. https://pubmed.ncbi.nlm.nih.gov/38777376/. |
[19] |
LINDBLOM J, MOHAN C, PARODIS I. Diagnostic, predictive and prognostic biomarkers in systemic lupus erythematosus: current insights[J]. Curr Opin Rheumatol, 2022, 34(2):139-149.
doi: 10.1097/BOR.0000000000000862 pmid: 35013077 |
[20] | TAUBMANN J, MÜLLER F, YALCIN MUTLU M, et al. CD19 Chimeric Antigen Receptor T Cell Treatment: Unraveling the Role of B Cells in Systemic Lupus Erythematosus[J]. Arthritis Rheumatol, 2024, 76(4):497-504. |
[21] | JACOBI A M, REITER K, MACKAY M, et al. Activated memory B cell subsets correlate with disease activity in systemic lupus erythematosus: delineation by expression of CD27, IgD, and CD95[J]. Arthritis Rheum, 2008, 58(6):1762-1773. |
[22] |
TIPTON C M, FUCILE C F, DARCE J, et al. Diversity, cellular origin and autoreactivity of antibody-secreting cell population expansions in acute systemic lupus erythematosus[J]. Nat Immunol, 2015, 16(7):755-765.
doi: 10.1038/ni.3175 pmid: 26006014 |
[23] |
FRAIETTA J A, LACEY S F, ORLANDO E J, et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia[J]. Nat Med. 2018; 24(5):563-571.
doi: 10.1038/s41591-018-0010-1 pmid: 29713085 |
[24] | TURICEK D P, GIORDANI V M, MORALY J, et al. CAR T-cell detection scoping review: an essential biomarker in critical need of standardization[J]. J Immunother Cancer, 2023, 11(5):e006596. |
[25] | KASAKOVSKI D, XU L, LI Y. T cell senescence and CAR-T cell exhaustion in hematological malignancies[J]. J Hematol Oncol, 2018, 11(1):91. |
[26] | ARCANGELI S, FALCONE L, CAMISA B, et al. Next-Generation Manufacturing Protocols Enriching TSCM CAR T Cells Can Overcome Disease-Specific T Cell Defects in Cancer Patients[J]. Front Immunol, 2020, 11:1217. |
[27] | SIMULA L, OLLIVIER E, ICARD P, et al. Immune Checkpoint Proteins, Metabolism and Adhesion Molecules: Overlooked Determinants of CAR T-Cell Migration?[J]. Cells, 2022, 11(11):1854. |
[28] |
ANSELL S M, MAURER M J, ZIESMER S C, et al. Elevated pretreatment serum levels of interferon-inducible protein-10 (CXCL10) predict disease relapse and prognosis in diffuse large B-cell lymphoma patients[J]. Am J Hematol, 2012, 87(9):865-869.
doi: 10.1002/ajh.23259 pmid: 22674570 |
[29] |
TIAN Y, WEN C, ZHANG Z, et al. CXCL9-modified CAR T cells improve immune cell infiltration and antitumor efficacy[J]. Cancer Immunol Immunother. 2022; 71(11):2663-2675.
doi: 10.1007/s00262-022-03193-6 pmid: 35352167 |
[30] | WANG G, ZHANG Z, ZHONG K, et al. CXCL11-armed oncolytic adenoviruses enhance CAR-T cell therapeutic efficacy and reprogram tumor microenvironment in glioblastoma[J]. Mol Ther, 2023, 31(1):134-153. |
[31] | LIU D, ZHAO J. Cytokine release syndrome: grading, modeling, and new therapy[J]. J Hematol Oncol, 2018, 11(1):121. |
[32] | HONG R, HU Y, HUANG H. Biomarkers for Chimeric Antigen Receptor T Cell Therapy in Acute Lymphoblastic Leukemia: Prospects for Personalized Management and Prognostic Prediction. Front Immunol. 2021; 12:627764. |
[33] |
TEACHEY D T, LACEY S F, SHAW P A, et al. Identification of Predictive Biomarkers for Cytokine Release Syndrome after Chimeric Antigen Receptor T-cell Therapy for Acute Lymphoblastic Leukemia[J]. Cancer Discov, 2016, 6(6):664-679.
doi: 10.1158/2159-8290.CD-16-0040 pmid: 27076371 |
[34] |
NORELLI M, CAMISA B, BARBIERA G, et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells[J]. Nat Med, 2018, 24(6):739-748.
doi: 10.1038/s41591-018-0036-4 pmid: 29808007 |
[35] |
HAY K A, HANAFI L A, LI D, et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy[J]. Blood, 2017, 130(21):2295-2306.
doi: 10.1182/blood-2017-06-793141 pmid: 28924019 |
[36] |
SANTOMASSO B D, PARK J H, SALLOUM D, et al. Clinical and Biological Correlates of Neurotoxicity Associated with CAR T-cell Therapy in Patients with B-cell Acute Lymphoblastic Leukemia[J]. Cancer Discov, 2018, 8(8):958-971.
doi: 10.1158/2159-8290.CD-17-1319 pmid: 29880584 |
[37] | MORENO-CASTAÑO A B, FERNÁNDEZ S, VENTOSA H, et al. Characterization of the endotheliopathy, innate-immune activation and hemostatic imbalance underlying CAR-T cell toxicities: laboratory tools for an early and differential diagnosis[J]. J Immunother Cancer, 2023, 11(4):e006365. |
[38] | FRIED S, AVIGDOR A, BIELORAI B, et al. Early and late hematologic toxicity following CD19 CAR-T cells[J]. Bone Marrow Transplant, 2019, 54(10):1643-1650. |
[39] | REJESKI K, PEREZ A, SESQUES P, et al. CAR-HEMATOTOX: a model for CAR T-cell-related hematologic toxicity in relapsed/refractory large B-cell lymphoma[J]. Blood, 2021, 138(24):2499-2513. |
[40] |
HILL J A, LI D, HAY K A, et al. Infectious complications of CD19-targeted chimeric antigen receptor-modified T-cell immunotherapy[J]. Blood, 2018, 131(1):121-130.
doi: 10.1182/blood-2017-07-793760 pmid: 29038338 |
[41] |
LOCKE F L, GHOBADI A, JACOBSON C A, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial[J]. Lancet Oncol, 2019, 20(1):31-42.
doi: S1470-2045(18)30864-7 pmid: 30518502 |
[42] |
LUO H, WANG N, HUANG L, et al. Inflammatory signatures for quick diagnosis of life-threatening infection during the CAR T-cell therapy[J]. J Immunother Cancer, 2019, 7(1):271.
doi: 10.1186/s40425-019-0767-x pmid: 31640816 |
[43] |
SANDLER R D, TATTERSALL R S, SCHOEMANS H, et al. Diagnosis and Management of Secondary HLH/MAS Following HSCT and CAR-T Cell Therapy in Adults; A Review of the Literature and a Survey of Practice Within EBMT Centres on Behalf of the Autoimmune Diseases Working Party (ADWP) and Transplant Complications Working Party (TCWP)[J]. Front Immunol, 2020, 11:524.
doi: 10.3389/fimmu.2020.00524 pmid: 32296434 |
[44] |
NEELAPU S S, TUMMALA S, KEBRIAEI P, et al. Chimeric antigen receptor T-cell therapy - assessment and management of toxicities[J]. Nat Rev Clin Oncol, 2018, 15(1):47-62.
doi: 10.1038/nrclinonc.2017.148 pmid: 28925994 |
[1] | ZHANG Xin, ZHAO Shengnan, FENG Xuebing. Current status and challenges in diagnosis and treatment of systemic lupus erythematosus in China [J]. Journal of Diagnostics Concepts & Practice, 2024, 23(03): 257-262. |
[2] | CHEN Guoqun, CAI Jiaodi. Interpretation of the Clinical Practice Guidelines for Non-small Lung Cancer (version 4 and version 5) of 2022 National Comprehensive Cancer Nerwork(NCCN) [J]. Journal of Diagnostics Concepts & Practice, 2023, 22(01): 8-13. |
[3] | ZHOU Sifeng, XU Haishu, FAN Xinsheng. Application of metabolomics of different biological samples in study of OSAHS biomarkers [J]. Journal of Diagnostics Concepts & Practice, 2022, 21(04): 535-540. |
[4] | GE Jianhua, GONG Wen, SHI Xinming, GONG Huiyun, MA Longxin, ZHOU Jinfeng, SHI Hui. Value of combining ELISA and CLIFT in detection of anti-dsDNA IgG antibody for diagnosis of systemic lupus erythematosis [J]. Journal of Diagnostics Concepts & Practice, 2018, 17(06): 658-663. |
[5] | DU Kun, YANG Xi, BIAN Binxian, REN Yiqian, ZHANG Guanghui. Comparison of diagnostic value of new infection biomarker presepsin with procalcitonin, C-reactive protein and interleukin-6 in diagnosis of bacterial infection [J]. Journal of Diagnostics Concepts & Practice, 2018, 17(05): 581-585. |
[6] | . [J]. Journal of Diagnostics Concepts & Practice, 2015, 14(06): 528-532. |
[7] | . [J]. Journal of Diagnostics Concepts & Practice, 2015, 14(06): 545-548. |
[8] | . [J]. Journal of Diagnostics Concepts & Practice, 2015, 14(03): 229-234. |
[9] | . [J]. Journal of Diagnostics Concepts & Practice, 2014, 13(06): 588-592. |
[10] | . [J]. Journal of Diagnostics Concepts & Practice, 2014, 13(03): 246-250. |
[11] | . [J]. Journal of Diagnostics Concepts & Practice, 2014, 13(03): 255-259. |
[12] | . [J]. Journal of Diagnostics Concepts & Practice, 2012, 11(04): 397-400. |
[13] | . [J]. Journal of Diagnostics Concepts & Practice, 2010, 9(04): 311-315. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||