内科理论与实践 ›› 2022, Vol. 17 ›› Issue (01): 84-87.doi: 10.16138/j.1673-6087.2022.01.016
傅小霜1,2, 李磊1,2
收稿日期:
2021-11-21
出版日期:
2022-02-28
发布日期:
2022-07-25
Received:
2021-11-21
Online:
2022-02-28
Published:
2022-07-25
中图分类号:
傅小霜, 李磊. 胆汁淤积性肝病与脂溶性维生素相互作用研究进展[J]. 内科理论与实践, 2022, 17(01): 84-87.
[1] | 曹旬旬, 高月求, 张文宏, 等. 基于上海市住院慢性肝病患者胆汁淤积患病率的调查研究[J]. 中华肝脏病杂志, 2015, 23(8): 569-573. |
[2] | 张雪梅, 李俊峰, 毛小荣. 胆汁酸代谢在肝硬化并发症中的研究进展[J]. 基础医学与临床, 2021, 41(1): 103-107. |
[3] |
Tessitore M, Sorrentino E, Schiano Di Cola G, et al. Malnutrition in pediatric chronic cholestatic disease[J]. Nutrients, 2021, 13(8): 2785.
doi: 10.3390/nu13082785 URL |
[4] |
Zoubek ME, Trautwein C, Strnad P. Reversal of liver fibrosis: from fiction to reality[J]. Best Pract Res Clin Gastroenterol, 2017, 31(2): 129-141.
doi: 10.1016/j.bpg.2017.04.005 URL |
[5] |
Li B, Cai SY, Boyer JL. The role of the retinoid receptor, RAR/RXR heterodimer, in liver physiology[J]. Biochim Biophys Acta Mol Basis Dis, 2021, 1867(5): 166085.
doi: 10.1016/j.bbadis.2021.166085 URL |
[6] |
Mamoon A, Subauste A, Subauste MC, et al. Retinoic acid regulates several genes in bile acid and lipid metabolism via upregulation of small heterodimer partner in hepatocytes[J]. Gene, 2014, 550(2): 165-170.
doi: 10.1016/j.gene.2014.07.017 URL |
[7] | Jahn D, Sutor D, Dorbath D, et al. Farnesoid X receptor-dependent and -independent pathways mediate the transcriptional control of human fibroblast growth factor 19 by vitamin A[J]. Biochim Biophys Acta, 2016, 1859(2): 381-392. |
[8] |
He H, Mennone A, Boyer JL, et al. Combination of retinoic acid and ursodeoxycholic acid attenuates liver injury in bile duct-ligated rats and human hepatic cells[J]. Hepatology, 2010, 53(2): 548-557.
doi: 10.1002/hep.24047 URL |
[9] | 于文静, 师盼, 潘琼, 等. 胆汁淤积下FGF19-ERK通路可上调MRP3/4表达减轻肝细胞损伤[J]. 中国细胞生物学学报, 2019, 41(8): 1588-1594. |
[10] |
Yuan Z, Wang G, Qu J, et al. 9-cis-retinoic acid elevates MRP3 expression by inhibiting sumoylation of RXRα to alleviate cholestatic liver injury[J]. Biochem Biophys Res Commun, 2018, 503(1): 188-194.
doi: 10.1016/j.bbrc.2018.06.001 URL |
[11] |
Yu D, Cai SY, Mennone A, et al. Cenicriviroc, a cytokine receptor antagonist, potentiates all-trans retinoic acid in reducing liver injury in cholestatic rodents[J]. Liver Int, 2018, 38(6): 1128-1138.
doi: 10.1111/liv.13698 URL |
[12] |
Takitani K, Kishi K, Miyazaki H, et al. Altered expression of retinol metabolism-related genes in an ANIT-induced cholestasis rat model[J]. Int J Mol Sci, 2018, 19(11): 3337.
doi: 10.3390/ijms19113337 URL |
[13] |
Quach HP, Noh K, Hoi SY, et al. Alterations in gene expression in vitamin D-deficiency: down-regulation of liver CYP7A1 and renal Oat3 in mice[J]. Biopharm Drug Dispos, 2018, 39(2): 99-115.
doi: 10.1002/bdd.2118 URL |
[14] |
Qin X, Wang X. Role of vitamin D receptor in the regulation of CYP3A gene expression[J]. Acta Pharm Sin B, 2019, 9(6): 1087-1098.
doi: 10.1016/j.apsb.2019.03.005 URL |
[15] |
Keane JT, Elangovan H, Stokes RA, et al. Vitamin D and the liver-correlation or cause?[J]. Nutrients, 2018, 10(4): 496.
doi: 10.3390/nu10040496 URL |
[16] |
Sun S, Xu MH, Zhuang PJ, et al. Effect and mechanism of vitamin D activation disorder on liver fibrosis in biliary atresia[J]. Sci Rep, 2021, 11(1): 19883.
doi: 10.1038/s41598-021-99158-3 URL |
[17] |
Asgharpour P, Dezfouli MRM, Nadealian MG, et al. Effects of 1, 25-dihydroxy vitamin D3 on clinical symptoms, pro-inflammatory and inflammatory cytokines in calves with experimental pneumonia[J]. Res Vet Sci, 2020, 132: 186-193.
doi: S0034-5288(19)31376-1 pmid: 32593863 |
[18] |
Zhao G, Elhafiz M, Jiang J, et al. Adaptive homeostasis of the vitamin D-vitamin D nuclear receptor axis in 8-methoxypsoralen-induced hepatotoxicity[J]. Toxicol Appl Pharmacol, 2019, 362: 150-158.
doi: 10.1016/j.taap.2018.11.002 URL |
[19] |
Firrincieli D, Zúñiga S, Rey C, et al. Vitamin D nuclear receptor deficiency promotes cholestatic liver injury by disruption of biliary epithelial cell junctions in mice[J]. Hepatology, 2013, 58(4): 1401-1412.
doi: 10.1002/hep.26453 pmid: 23696511 |
[20] | Yasin M, Butt MS, Zeb A. Vitamin K2 rich food products[EB/J]. 2017. https://www.intechopen.com/chapters/51024. |
[21] |
Sultana H, Watanabe K, Rana MM, et al. Effects of vitamin K2 on the expression of genes involved in bile acid synthesis and glucose homeostasis in mice with humanized PXR[J]. Nutrients, 2018, 10(8): 982.
doi: 10.3390/nu10080982 URL |
[22] |
Avior Y, Levy G, Zimerman M, et al. Microbial-derived lithocholic acid and vitamin K2 drive the metabolic maturation of pluripotent stem cells-derived and fetal hepatocytes[J]. Hepatology, 2015, 62(1): 265-278.
doi: 10.1002/hep.27803 URL |
[23] |
Yoshinari K. Role of nuclear receptors PXR and CAR in xenobiotic-induced hepatocyte proliferation and chemical carcinogenesis[J]. Biol Pharm Bull, 2019, 42(8): 1243-1252.
doi: 10.1248/bpb.b19-00267 pmid: 31366862 |
[24] |
Shizu R, Ishimura M, Nobusawa S, et al. The influence of the long-term chemical activation of the nuclear receptor pregnane X receptor (PXR) on liver carcinogenesis in mice[J]. Arch Toxicol, 2021, 95(3): 1089-1102.
doi: 10.1007/s00204-020-02955-4 URL |
[25] |
Jiao K, Sun Q, Chen B, et al. Vitamin K1 attenuates bile duct ligation-induced liver fibrosis in rats[J]. Scand J Gastroenterol, 2014, 49(6): 715-721.
doi: 10.3109/00365521.2014.899618 URL |
[26] |
Zhao LY, Xu JY, Shi Z, et al. Pregnane X receptor (PXR) deficiency improves high fat diet-induced obesity via induction of fibroblast growth factor 15 (FGF15) expression[J]. Biochem Pharmacol, 2017, 142: 194-203.
doi: 10.1016/j.bcp.2017.07.019 URL |
[27] |
Dempsey JL, Wang D, Siginir G, et al. Pharmacological activation of PXR and CAR downregulates distinct bile acid-metabolizing intestinal bacteria and alters bile acid homeostasis[J]. Toxicol Sci, 2018, 168(1): 40-60.
doi: 10.1093/toxsci/kfy271 URL |
[28] | 中华医学会感染病学分会肝衰竭与人工肝学组, 中华医学会肝病学分会重型肝病与人工肝学组. 肝衰竭诊治指南(2018年版)[J]. 临床肝胆病杂志, 2019, 35(1): 38-44. |
[29] |
Luangmonkong T, Suriguga S, Mutsaers HAM, et al. Targeting oxidative stress for the treatment of liver fibrosis[J]. Rev Physiol Biochem Pharmacol, 2018, 175: 71-102.
doi: 10.1007/112_2018_10 pmid: 29728869 |
[30] | Barbakadze G, Khachidze T, Sulaberidze G, et al. Comparative analysis of efficiency of ursodeoxycholic acid and combination of vitamin E and vitamin C in treatment of non-diabetic nonalcojolic steatohepatitis[J]. Georgian Med News, 2019, 288: 81-85. |
[31] |
Banini BA, Sanyal AJ. Current and future pharmacologic treatment of nonalcoholic steatohepatitis[J]. Curr Opin Gastroenterol, 2017, 33(3): 134-141.
doi: 10.1097/MOG.0000000000000356 URL |
[32] | 梁慧聪, 丁转南, 袁冠华, 等. 孕期维生素A、E水平与妊娠期肝内胆汁淤积症相关性研究[J]. 中国实用医药, 2020, 15(13): 75-77. |
[1] | 章晓炎, 徐静, 璩斌. 血清维生素D水平对老年慢性肾脏病患者肾功能的影响[J]. 内科理论与实践, 2022, 17(04): 307-312. |
[2] | 牟兴, 叶倩仪, 卢红娟, 徐沪济, 吴歆. 季节变化对风湿病发病机制及病情活动的影响[J]. 诊断学理论与实践, 2022, 21(03): 304-311. |
[3] | 杨玲, 范慧倩, 严胜琦. 胆汁淤积性肝病治疗进展[J]. 内科理论与实践, 2022, 17(01): 29-37. |
[4] | 鲁晓岚, 夏巧云. 胆汁淤积性瘙痒发病机制及其治疗研究进展[J]. 内科理论与实践, 2022, 17(01): 43-47. |
[5] | 宁玲, 刘贞君, 李伟, 刘雯, 李卫, 张振华, 方卫东, 高有方, 郑晓玮, 李磊. 安徽地区胆汁淤积性肝病病理学病因分析[J]. 内科理论与实践, 2022, 17(01): 53-57. |
[6] | 谷巍, 侯丽萍, 李晓龙, 耿建林. 硒酵母联合维生素D对不同年龄分层的桥本甲状腺炎患者甲状腺相关抗体水平的影响[J]. 内科理论与实践, 2021, 16(06): 392-396. |
[7] | 轩应利, 陈斐虹, 秦丽, 和瑞斌, 庞诗情, 袁江姿. 维生素D与慢性肾脏病患者夜间血压的相关性分析[J]. 内科理论与实践, 2021, 16(04): 246-250. |
[8] | 付佳闻, 李晓华, 张宏利, 徐艳红, 朱祎. 维生素D缺乏与桥本甲状腺炎及相关因素的研究[J]. 内科理论与实践, 2021, 16(01): 27-31. |
[9] | 姚小艳, 陈君. 上海地区孕妇维生素D水平调查及其与妊娠期糖尿病发生的相关性研究及其预测价值探索[J]. 诊断学理论与实践, 2019, 18(06): 634-639. |
[10] | 华静, 倪茜茜,. 胆汁淤积性肝病的药物治疗进展[J]. 内科理论与实践, 2018, 13(06): 334-338. |
[11] | 陈靖,. 慢性肾脏病矿物质和骨异常治疗进展:合理应用维生素D受体激动剂[J]. 内科理论与实践, 2018, 13(04): 207-211. |
[12] | 谭姣容, 田冬梅, 杨昕, 张立娟, 王芳, 苏玉霞. 维生素D缺乏与糖尿病患者糖尿病肾病发生率的关系研究:前瞻性3年随访研究[J]. 诊断学理论与实践, 2018, 17(02): 176-180. |
[13] | 王翠霞, 章晓炎, 巩云霞, 吴方. 老年人骨代谢状态指标与动脉粥样硬化性疾病的相关性研究[J]. 诊断学理论与实践, 2017, 16(06): 633-638. |
[14] | 周妍, 顾祎. 血清维生素D水平与老年人社区获得性肺炎严重程度的相关性研究[J]. 诊断学理论与实践, 2017, 16(06): 612-616. |
[15] | 梁广舒, 顾志冬. 脱-γ-羧基凝血酶原的基础和临床研究进展[J]. 诊断学理论与实践, 2016, 15(05): 532-536. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||