内科理论与实践 ›› 2023, Vol. 18 ›› Issue (02): 92-98.doi: 10.16138/j.1673-6087.2023.02.006
收稿日期:
2022-10-20
出版日期:
2023-04-25
发布日期:
2023-05-15
通讯作者:
汪荣盛 E-mail: 基金资助:
XIAO Jianwei1, CAI Xu1, HUANG Xinmin1, HONG Yiwei1, WANG Rongsheng2()
Received:
2022-10-20
Online:
2023-04-25
Published:
2023-05-15
摘要:
目的: 探索痛风性关节炎(gouty arthritis,GA)潜在发病相关长链非编码RNA(long noncoding RNA, lncRNA)及与炎症因子的相关性。方法: 通过基因表达综合(Gene Expression Omnibus, GEO)数据库获取GA芯片数据,通过多种机器学习方法筛选并取交集得到关键的lncRNA。分析与lncRNA共表达的mRNA,并进行GO富集分析及京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes, KEGG)信号通路分析。通过实时荧光定量PCR(quantitative real-time polymerase chain reaction, qRT-PCR)验证关键lncRNA在GA患者中表达情况与炎症因子水平相关性,并绘制受试者操作特征曲线(receiver operator characteristic curve,ROC曲线)分析LINC01465表达水平对GA患者诊断价值。结果: 筛选出GA关键lncRNA 1个(LINC01465)。GO富集分析结果显示富集于RNA剪接、氧化磷酸化、还原型烟酰胺腺嘌呤二核苷酸(reduced nicotinamide adenine dinucleotide,NADH)脱氢酶活性等功能。KEGG信号通路分析显示主要富集于烟酸和烟酰胺代谢、磷脂酰肌醇3激酶(phosphoinositide 3-kinase,PI3K)-Akt、肿瘤坏死因子信号等代谢及炎症通路。qRT-PCR结果显示在GA患者中LINC01465表达上调,与红细胞沉降率(r=0.658,P=0.030)、C反应蛋白(r=0.660,P=0.040)、白介素-6(r=0.794,P=0.008)表达呈正相关。ROC曲线下面积为0.86。结论: LINC01465可能是GA潜在的诊断及治疗靶点。
中图分类号:
肖剑伟, 蔡旭, 黄新民, 洪易炜, 汪荣盛. LINC01465在痛风性关节炎中的表达及临床意义[J]. 内科理论与实践, 2023, 18(02): 92-98.
XIAO Jianwei, CAI Xu, HUANG Xinmin, HONG Yiwei, WANG Rongsheng. Expression of LINC01465 in gouty arthritis and its clinical significances[J]. Journal of Internal Medicine Concepts & Practice, 2023, 18(02): 92-98.
[1] |
Kuo CF, Grainge MJ, Zhang W, et al. Global epidemiology of gout: prevalence, incidence and risk factors[J]. Nat Rev Rheumatol, 2015, 11(11): 649-662.
doi: 10.1038/nrrheum.2015.91 |
[2] |
Dehlin M, Jacobsson L, Roddy E. Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors[J]. Nat Rev Rheumatol, 2020, 16(7): 380-390.
doi: 10.1038/s41584-020-0441-1 pmid: 32541923 |
[3] |
Major TJ, Dalbeth N, Stahl EA, et al. An update on the genetics of hyperuricaemia and gout[J]. Nat Rev Rheumatol, 2018, 14(6): 341-353.
doi: 10.1038/s41584-018-0004-x pmid: 29740155 |
[4] |
Jeong JH, Hong S, Kwon OC, et al. CD14+ cells with the phenotype of infiltrated monocytes consist of distinct populations characterized by anti-inflammatory as well as pro-inflammatory activity in gouty arthritis[J]. Front Immunol, 2017, 8:1260.
doi: 10.3389/fimmu.2017.01260 pmid: 29056937 |
[5] |
Statello L, Guo CJ, Chen LL, et al. Gene regulation by long non-coding RNAs and its biological functions[J]. Nat Rev Mol Cell Biol, 2021, 22(2): 96-118.
doi: 10.1038/s41580-020-00315-9 |
[6] |
Engreitz JM, Ollikainen N, Guttman M. Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression[J]. Nat Rev Mol Cell Biol, 2016, 17(12): 756-770.
doi: 10.1038/nrm.2016.126 |
[7] |
Fang L, Xu X, Lu Y, et al. Long noncoding RNA SNHG8 accelerates acute gouty arthritis development by upregulating AP3D1 in mice[J]. Bioengineered, 2021, 12(2): 9803-9815.
doi: 10.1080/21655979.2021.1995579 pmid: 34874227 |
[8] |
Liu YF, Xing GL, Chen Z, et al. Long non-coding RNA HOTAIR knockdown alleviates gouty arthritis through miR-20b upregulation and NLRP3 downregulation[J]. Cell Cycle, 2021, 20(3): 332-344.
doi: 10.1080/15384101.2021.1874696 URL |
[9] |
Zhong X, Peng Y, Liao H, et al. Aberrant expression of long non-coding RNAs in peripheral blood mononuclear cells isolated from patients with gouty arthritis[J]. Exp Ther Med, 2019, 18(3): 1967-1976.
doi: 10.3892/etm.2019.7816 pmid: 31452697 |
[10] |
Xiao J, Wang R, Cai X, et al. Coupling of co-expression network analysis and machine learning validation unearthed potential key genes involved in rheumatoid arthritis[J]. Front Genet, 2021, 12: 604714.
doi: 10.3389/fgene.2021.604714 URL |
[11] |
Adamichou C, Genitsaridi I, Nikolopoulos D, et al. Lupus or not? SLE risk probability index(SLERPI): a simple, clinician-friendly machine learning-based model to assist the diagnosis of systemic lupus erythematosus[J]. Ann Rheum Dis, 2021, 80(6): 758-766.
doi: 10.1136/annrheumdis-2020-219069 URL |
[12] |
Noss MR, Saguil A. Gout: diagnosis and management[J]. Am Fam Physician, 2017, 96(10):668-670.
pmid: 29431386 |
[13] |
Lodde V, Murgia G, Simula ER, et al. Long noncoding RNAs and circular RNAs in autoimmune diseases[J]. Biomolecules, 2020, 10(7): 1044.
doi: 10.3390/biom10071044 URL |
[14] |
Zhang M, Jang H, Nussinov R. PI3K inhibitors: review and new strategies[J]. Chem Sci, 2020, 11(23): 5855-5865.
doi: 10.1039/d0sc01676d pmid: 32953006 |
[15] |
Shi Y, Mucsi AD, Ng G. Monosodium urate crystals in inflammation and immunity[J]. Immunol Rev, 2010, 233(1): 203-217.
doi: 10.1111/j.0105-2896.2009.00851.x pmid: 20193001 |
[16] |
Malumbres M, Barbacid M. RAS oncogenes: the first 30 years[J]. Nat Rev Cancer, 2003, 3(6): 459-465.
doi: 10.1038/nrc1097 pmid: 12778136 |
[17] |
Roskoski R Jr. RAF protein-serine/threonine kinases: structure and regulation[J]. Biochem Biophys Res Commun, 2010, 399(3): 313-317.
doi: 10.1016/j.bbrc.2010.07.092 URL |
[18] |
Krygowska AA, Castellano E. PI3K: a crucial piece in the RAS signaling puzzle[J]. Cold Spring Harbor Perspect Med, 2018, 8(6): a031450.
doi: 10.1101/cshperspect.a031450 URL |
[19] |
Pacold ME, Suire S, Perisic O, et al. Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase gamma[J]. Cell, 2000, 103(6): 931-943.
doi: 10.1016/s0092-8674(00)00196-3 pmid: 11136978 |
[20] |
Cavalcanti NG, Marques CD, Lins E Lins TU, et al. Cytokine profile in gout: inflammation driven by IL-6 and IL-18?[J]. Immunol Invest, 2016, 45(5): 383-395.
doi: 10.3109/08820139.2016.1153651 pmid: 27219123 |
[21] |
Charles P, Terrier B, Perrodeau é, et al. Comparison of individually tailored versus fixed-schedule rituximab regimen to maintain ANCA-associated vasculitis remission[J]. Ann Rheum Dis, 2018, 77(8): 1143-1149.
doi: 10.1136/annrheumdis-2017-212878 pmid: 29695500 |
[22] |
Nizet V, Johnson RS. Interdependence of hypoxic and innate immune responses[J]. Nat Rev Immunol, 2009, 9(9): 609-617.
doi: 10.1038/nri2607 pmid: 19704417 |
[23] |
Van den Bossche J, O’Neill LA, Menon D. Macrophage immunometabolism: where are we (going)?[J]. Trends Immunol, 2017, 38(6): 395-406.
doi: S1471-4906(17)30042-X pmid: 28396078 |
[24] |
Mian Wu, Zhang M, Ma Y, et al. Chaetocin attenuates gout in mice through inhibiting HIF-1α and NLRP3 inflammasome-dependent IL-1β secretion in macrophages[J]. Arch Biochem Biophys, 2019, 670: 94-103.
doi: S0003-9861(19)30038-4 pmid: 31255694 |
[25] |
Vallée A, Lecarpentier Y. Crosstalk between peroxisome proliferator-activated receptor gamma and the canonical Wnt/β-catenin pathway in chronic inflammation and oxidative stress during carcinogenesis[J]. Front Immunol, 2018, 9: 745.
doi: 10.3389/fimmu.2018.00745 pmid: 29706964 |
[26] |
Lopes F, Coelho FM, Costa VV, et al. Resolution of neutrophilic inflammation by H2O2 in antigen-induced arthritis[J]. Arthritis Rheum, 2011, 63(9): 2651-2660.
doi: 10.1002/art.30448 URL |
[27] |
Galvão I, Queiroz-Junior CM, et al. The inhibition of phosphoinositide-3 kinases induce resolution of inflammation in a Gout model[J]. Front Pharmacol, 2019, 9: 1505.
doi: 10.3389/fphar.2018.01505 URL |
[28] |
Stewart DJ. Wnt signaling pathway in non-small cell lung cancer[J]. J Natl Cancer Inst, 2014, 106(1): djt356.
doi: 10.1093/jnci/djt356 URL |
[29] |
Ke B, Shen XD, Kamo N, et al. β-catenin regulates innate and adaptive immunity in mouse liver ischemia-reperfusion injury[J]. Hepatology, 2013, 57(3): 1203-1214.
doi: 10.1002/hep.26100 pmid: 23081841 |
[30] |
Xiao Y, Peng H, Hong C, et al. PDGF promotes the warburg effect in pulmonary arterial smooth muscle cells via activation of the PI3K/AKT/mTOR/HIF-1α signaling pathway[J]. Cell Physiol Biochem, 2017, 42(4): 1603-1613.
doi: 10.1159/000479401 URL |
[31] |
Zhong H, Chiles K, Feldser D, et al. Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics[J]. Cancer Res, 2000, 60(6): 1541-1545.
pmid: 10749120 |
[32] |
Yang XM, Wang YS, Zhang J, et al. Role of PI3K/Akt and MEK/ERK in mediating hypoxia-induced expression of HIF-1α and VEGF in laser-induced Rat choroidal neovascularization[J]. Invest Ophthalmol Vis Sci, 2009, 50(4): 1873-1879.
doi: 10.1167/iovs.08-2591 URL |
[33] |
Karar J, Cerniglia GJ, Lindsten T, et al. Dual PI3K/mTOR inhibitor NVP-BEZ235 suppresses hypoxia-inducible factor (HIF)-1α expression by blocking protein translation and increases cell death under hypoxia[J]. Cancer Biol Ther, 2012, 13(11): 1102-1111.
doi: 10.4161/cbt.21144 pmid: 22895065 |
[34] |
Semenza GL. HIF-1: upstream and downstream of cancer metabolism[J]. Curr Opin Genet Dev, 2010, 20(1): 51-56.
doi: 10.1016/j.gde.2009.10.009 pmid: 19942427 |
[1] | 甘娥忠, 刘焱, 王海荣, 王承光. 基于机器学习性能度量理论的保障资源指标综合权衡研究[J]. 空天防御, 2023, 6(1): 38-44. |
[2] | 韦坤辰, 谢芸, 李青峰. 皮肤软组织扩张的相关研究进展 [J]. 组织工程与重建外科杂志, 2023, 19(1): 70-. |
[3] | 赵京京, 吴镝. 软腭发育信号通路的研究进展 [J]. 组织工程与重建外科杂志, 2023, 19(1): 75-. |
[4] | 贾岛, 陈磊, 朱志鹏, 余曜, 迟德建. 机器学习在引战系统设计中的应用研究[J]. 空天防御, 2022, 5(2): 27-31. |
[5] | 王志燕 宋涛. 人工智能在颅颌面外科中的应用[J]. 组织工程与重建外科杂志, 2022, 18(2): 160-. |
[6] | 王卓鑫, 赵海涛, 谢月涵, 任翰韬, 袁明清, 张博明, 陈吉安. 反向传播神经网络联合遗传算法对复合材料模量的预测[J]. 上海交通大学学报, 2022, 56(10): 1341-1348. |
[7] | 李川, 聂熠文, 刘军伟, 孟凡钦, 沈晓静. 基于机器学习的多算法融合航迹稳健起始方法[J]. 空天防御, 2022, 5(1): 20-24. |
[8] | 何新, 陈慧, 冯炜炜. 机器学习算法在辅助超声诊断附件肿块良恶性中的应用研究进展[J]. 诊断学理论与实践, 2022, 21(04): 541-546. |
[9] | 赵东宝. 风湿病继发骨质疏松症研究进展[J]. 内科理论与实践, 2022, 17(03): 181-185. |
[10] | 史曼曼, 王语欣, 马毓华, 王朝晖. 系统性红斑狼疮的遗传学研究进展[J]. 内科理论与实践, 2022, 17(03): 267-272. |
[11] | 周毅, 秦康平, 孙近文, 范栋琦, 郑义明. 台风气象环境电网设备风险量化预警及其N-m故障处置预案在线生成方法[J]. 上海交通大学学报, 2021, 55(S2): 22-30. |
[12] | 何夏维, 蔡云泽, 严玲玲. 一种合成残差式的反作用轮故障检测方法[J]. 上海交通大学学报, 2021, 55(6): 716-728. |
[13] | 祝颂, 钱晓超, 陆营波, 刘飞. 基于XGBoost的装备体系效能预测方法[J]. 空天防御, 2021, 4(2): 1-. |
[14] | 雷晓旭 王春 赵曦. 炎症微环境作用下 BMPs-ERK5 信号通路对牙周膜干细胞成骨分化的影响 #br#[J]. 组织工程与重建外科杂志, 2021, 17(1): 30-. |
[15] | 包清临, 柴华奇, 赵嵩正, 王吉林. 采用机器学习算法的技术机会挖掘模型及应用[J]. 上海交通大学学报, 2020, 54(7): 705-717. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||