内科理论与实践 ›› 2024, Vol. 19 ›› Issue (05): 303-309.doi: 10.16138/j.1673-6087.2024.05.03
张煜1, 查晴1, 杨玲1, 叶佳雯1, 杨克2, 刘艳1()
收稿日期:
2024-01-22
出版日期:
2024-10-28
发布日期:
2025-01-16
通讯作者:
刘艳 E-mail:liuyan_ivy@126.com
基金资助:
ZHANG Yu1, ZHA Qing1, YANG Ling1, YE Jiawen1, YANG Ke2, LIU Yan1()
Received:
2024-01-22
Online:
2024-10-28
Published:
2025-01-16
摘要:
目的: 研究血清MG53水平与冠状动脉钙化(coronary artery calcification,CAC)严重程度及患者预后的相关性。方法: 纳入2016—2018年因胸闷等不适入住上海交通大学医学院附属瑞金医院心血管内科治疗,经冠状动脉CT血管成像(CT angiography,CTA)检查确诊存在CAC的患者。使用Agatston积分计算CAC评分(CAC score, CACS),使用酶联免疫吸附法检测血清MG53水平,并对患者进行为期5年的随访,记录心血管终点事件发生情况。根据CACS和血清MG53水平对患者进行分组。使用Logistic回归分析血清MG53水平与患者CAC水平的相关性;使用Kaplan-Meier曲线和COX比例风险模型分析血清MG53水平对CAC患者预后的影响。使用R软件(4.2.2版)计算血清MG53水平预测终点事件的最佳截断值。结果: 共纳入患者195例。与低风险组相比,高风险组患者的血清MG53水平明显降低[57.717(28.548,139.965)pg/mL比33.553(13.509,56.952) pg/mL,P<0.001]。血清MG53水平与CAC病变程度独立相关(OR=0.984,95%CI:0.971~0.994,P<0.007)。低MG53水平患者心血管事件的发生风险显著升高(OR=0.282,95%CI:0.160~0.498,P<0.001)。血清MG53水平的最佳截断值为18.36 pg/mL。结论: 血清MG53水平可能与CAC的严重程度以及患者预后相关,提示血清MG53水平可能是预测CAC及患者预后的生物标志物。
中图分类号:
张煜, 查晴, 杨玲, 叶佳雯, 杨克, 刘艳. 血清MG53水平与冠状动脉钙化的相关性研究[J]. 内科理论与实践, 2024, 19(05): 303-309.
ZHANG Yu, ZHA Qing, YANG Ling, YE Jiawen, YANG Ke, LIU Yan. Study on the correlation between serum MG53 level and coronary artery calcification[J]. Journal of Internal Medicine Concepts & Practice, 2024, 19(05): 303-309.
表1
2组患者的基线资料[$\bar{x}\pm s$/n(%)/M(Q1, Q3)]
项目 | 低风险组 (n=66) | 高风险组 (n=129) | t/U/χ2 | P |
---|---|---|---|---|
年龄(岁) | 59.00(53.00,66.00) | 67.00(61.00,75.00) | -4.889 | <0.001 |
男性[n(%)] | 39(59.1) | 99(76.7) | 6.578 | 0.010 |
BMI(kg/m2) | 25.403±3.218 | 25.421±3.235 | -0.036 | 0.972 |
吸烟[n(%)] | 24(36.4) | 69(53.5) | 5.133 | 0.023 |
心率(次/min) | 78(68,88) | 76(70,84) | 0.263 | 0.794 |
收缩压(mmHg) | 130.606±17.203 | 135.341±19.581 | -1.655 | 0.100 |
舒张压(mmHg) | 73.591±10.047 | 74.829±10.861 | -0.769 | 0.443 |
高血压[n(%)] | 36(54.5) | 94(72.9) | 6.596 | 0.010 |
糖尿病[n(%)] | 16(24.2) | 50(38.8) | 4.110 | 0.043 |
慢性肾脏病[n(%)] | 1(1.5) | 6(4.7) | 1.241 | 0.265 |
hsCRP(mg/L) | 3.689±9.875 | 2.591±6.299 | 0.774 | 0.440 |
血红蛋白(g/L) | 136.0(124.0,144.0) | 135.0(124.0,145.0) | 0.361 | 0.719 |
血小板(×109/L) | 177.0(146.0,205.0) | 172.0(145.0,206.0) | 0.043 | 0.967 |
空腹血糖(mmol/L) | 5.506±1.296 | 5.943±2.073 | -1.411 | 0.160 |
HbA1c(%) | 5.911±0.774 | 6.339±1.220 | -2.508 | 0.013 |
TC(mmol/L) | 3.66(3.02,4.18) | 4.20(3.66,5.28) | -4.362 | <0.001 |
TG(mmol/L) | 1.32(1.00,1.74) | 1.42(1.04,1.99) | -1.243 | 0.214 |
LDL-C(mmol/L) | 2.03(1.49,2.46) | 2.67(2.17,3.44) | -5.740 | <0.001 |
HDL-C(mmol/L) | 1.37(1.22,1.51) | 1.09(0.93,1.29) | 6.544 | <0.001 |
LP(a)(mmol/L) | 0.12(0.07,0.32) | 0.14(0.08,0.30) | -0.236 | 0.814 |
eGFR(ml/min) | 85.203±17.008 | 78.278±17.753 | 2.578 | 0.010 |
Ca2+(mmol/L) | 2.240(2.170,2.290) | 2.240(2.170,2.310) | -0.370 | 0.712 |
P(mmol/L) | 1.140(1.010,1.250) | 1.120(1.020,1.230) | 0.550 | 0.583 |
D-二聚体(mg/L) | 0.325±0.382 | 0.881±3.295 | -1.359 | 0.176 |
MG53(pg/mL) | 58.717(28.548,139.965) | 33.553(13.509,56.952) | 4.840 | <0.001 |
LVEF(%) | 66.00(64.00,69.00) | 64.00(57.00,68.00) | 3.125 | 0.002 |
LVDD(mm) | 48.00(46.00,52.00) | 49.00(46.00,51.00) | -0.046 | 0.965 |
LVSD(mm) | 30.00(29.00,33.00) | 31.00(29.00,34.00) | -0.719 | 0.471 |
他汀类药物[n(%)] | 42(63.6) | 120(93.0) | 26.819 | <0.001 |
抗血小板药[n(%)] | 44(66.7) | 119(92.2) | 20.830 | <0.001 |
CCB[n(%)] | 18(27. 3) | 46(35.7) | 1.393 | 0.238 |
利尿剂[n(%)] | 28(42.4) | 28(21.7) | 9.156 | 0.002 |
ACEI/ARB[n(%)] | 33(50.0) | 78(60.5) | 1.950 | 0.163 |
β受体阻滞剂[n(%)] | 51(77.3) | 89(69.0) | 1.478 | 0.224 |
降糖药[n(%)] | 11(16.7) | 39(30.2) | 4.214 | 0.040 |
表2
影响CAC病变程度的单因素Logistic分析
因素 | β | SE | Wald χ2 | OR(95%CI) | P |
---|---|---|---|---|---|
年龄(每增加 1岁) | 0.068 | 0.015 | 20.603 | 1.070(1.039~1.102) | <0.001 |
男性 | 0.826 | 0.326 | 6.431 | 2.285(1.207~4.326) | 0.011 |
目前吸烟 | 0.699 | 0.311 | 5.063 | 2.012(1.094~3.701) | 0.024 |
高血压 | 0.806 | 0.317 | 6.472 | 2.238(1.203~4.164) | 0.011 |
糖尿病 | 0.682 | 0.339 | 4.04 | 1.978(1.017~3.846) | 0.044 |
抗血小板药物 使用史 | 1.783 | 0.42 | 18.012 | 5.950(2.611~13.558) | <0.001 |
他汀类药物使 用史 | 2.031 | 0.43 | 22.297 | 7.619(3.280~17.699) | <0.001 |
降糖药使用史 | 0.773 | 0.382 | 4.1 | 2.167(1.025~4.580) | 0.043 |
HDL-C(每升高 1 mmol/L) | -3.48 | 0.641 | -29.496 | 0.031(0.009~0.108) | <0.001 |
LDL-C(每升高 1 mmol/L) | 1.051 | 0.219 | 22.992 | 2.859(1.861~4.393) | <0.001 |
eGFR(每升高 1 mL/min) | -0.023 | 0.009 | -6.325 | 0.977(0.960~0.995) | 0.012 |
MG53(每升高 1 pg/mL) | -0.015 | 0.003 | -19.448 | 0.985(0.979~0.992) | <0.001 |
[1] | Hashmi S, Shah PW, Aherrahrou Z, et al. Beyond the basics: unraveling the complexity of coronary artery calcification[J]. Cells, 2023, 12(24):2822. |
[2] | Mohan J, Bhatti K, Tawney A, et al. Coronary artery calcification[M/OL]. 2023. https://www.ncbi.nlm.nih.gov/books/NBK519037/. |
[3] | Ji B, Liu XB. Coronary artery calcification: concepts and clinical applications[J]. Ann Med Surg (Lond), 2024, 86(5):2848-2855. |
[4] | Song R, Peng W, Zhang Y, et al. Central role of E3 ubiquitin ligase MG53 in insulin resistance and metabolic disorders[J]. Nature, 2013, 494(7437):375-379. |
[5] | Jiang W, Liu M, Gu C, et al. The pivotal role of mitsugumin 53 in cardiovascular diseases[J]. Cardiovasc Toxicol, 2021, 21(1):2-11. |
[6] | Feng H, Shen H, Robeson MJ, et al. MG53 E3 ligase-dead mutant protects diabetic hearts from acute ischemic/reperfusion injury and ameliorates diet-induced cardiometabolic damage[J]. Diabetes, 2022, 71(2):298-314. |
[7] | Cao CM, Zhang Y, Weisleder N, et al. MG53 constitutes a primary determinant of cardiac ischemic preconditioning[J]. Circulation, 2010, 121(23):2565-2574. |
[8] | Pagliaro P, Penna C. Cardiac postconditioning[J]. Antioxid Redox Signal, 2011, 14(5):777-779. |
[9] | Han X, Chen D, Liufu N, et al. MG53 protects against sepsis-induced myocardial dysfunction by upregulating peroxisome proliferator-activated receptor-α[J]. Oxid Med Cell Longev, 2020, 2020:7413693. |
[10] | Xie H, Wang Y, Zhu T, et al. Serum MG53/TRIM72 is associated with the presence and severity of coronary artery disease and acute myocardial infarction[J]. Front Physiol, 2020, 11:617845. |
[11] | Xie H, Yan Z, Feng S, et al. Prognostic value of circulating MG53 levels in acute myocardial infarction[J]. Front Cardiovasc Med, 2020, 7:596107. |
[12] | van der Aalst CM, Denissen SJAM, Vonder M, et al. Screening for cardiovascular disease risk using traditional risk factor assessment or coronary artery calcium scoring: the ROBINSCA trial[J]. Eur Heart J Cardiovasc Imaging, 2020, 21(11):1216-1224. |
[13] | Zhao Y, Qian Y, Sun Z, et al. Role of PI3K in the progression and regression of atherosclerosis[J]. Front Pharmacol, 2021, 12:632378. |
[14] | Hao N, Zhou Z, Zhang F, et al. Interleukin-29 accelerates vascular calcification via JAK2/STAT3/BMP2 signaling[J]. J Am Heart Assoc, 2023, 12(1):e027222. |
[15] |
Huang H, Feng H, Zhuge D. M1 macrophage activated by notch signal pathway contributed to ventilator-induced lung injury in chronic obstructive pulmonary disease model[J]. J Surg Res, 2019, 244:358-367.
doi: S0022-4804(19)30456-1 pmid: 31323391 |
[16] |
Liu C, Li B, Tang K, et al. Aquaporin 1 alleviates acute kidney injury via PI3K-mediated macrophage M2 polarization[J]. Inflamm Res, 2020, 69(5):509-521.
doi: 10.1007/s00011-020-01334-0 pmid: 32179955 |
[17] | Kang JH, Kawano T, Murata M, et al. Vascular calcification and cellular signaling pathways as potential therapeutic targets[J]. Life Sci, 2024, 336:122309. |
[18] |
Chen X, Su J, Feng J, et al. TRIM72 contributes to cardiac fibrosis via regulating STAT3/Notch-1 signaling[J]. J Cell Physiol, 2019, 234(10):17749-17756.
doi: 10.1002/jcp.28400 pmid: 30820965 |
[19] | Wang Y, Zhou H, Wu J, et al. MG53 alleviates hypoxia/reoxygenation-induced cardiomyocyte injury by succinylation and ubiquitination modification[J]. Clin Exp Hypertens, 2023, 45(1):2271196. |
[20] | Li Z, Dai R, Chen M, et al. p55γ degrades RIP3 via MG53 to suppress ischaemia-induced myocardial necroptosis and mediates cardioprotection of preconditioning[J]. Cardiovasc Res, 2023, 119(14):2421-2440. |
[1] | 陈威威, 贾赫尘, 王国勇, 等.
体表动静脉畸形病灶血管构筑的临床研究:术前评估与治疗策略
[J]. 组织工程与重建外科杂志, 2024, 20(6): 617-. |
[2] | 周悦, 叶媚娜, 代秋颖, 等. 肉芽肿性乳腺炎病灶组织差异表达蛋白质筛选及关键分子验证[J]. 组织工程与重建外科杂志, 2024, 20(1): 75-. |
[3] | 强士豪, 戴晴霞, 黄丽娜, 郭华, 崔小川. 慢性阻塞性肺疾病合并阻塞性睡眠呼吸暂停的生物标志物研究进展[J]. 内科理论与实践, 2024, 19(05): 322-327. |
[4] | 王虹晓, 苏琪莹, 阎骅. 结直肠癌预后生物标志物研究进展[J]. 内科理论与实践, 2024, 19(05): 337-341. |
[5] | 李卓含, 黄新韵, 郭睿, 李彪. 18F-FDG PET/CT在滤泡性淋巴瘤诊断和预后评估中的研究进展[J]. 诊断学理论与实践, 2024, 23(04): 439-444. |
[6] | 王一阳, 吕良敬. 系统性红斑狼疮CAR T细胞治疗疗效预测及安全性评估的潜在生物标志物[J]. 诊断学理论与实践, 2024, 23(03): 263-269. |
[7] | 朱维维, 李倩, 吴凡, 翟志敏. 100例骨髓增生异常性肿瘤患者基因突变及其与临床特征间的关系[J]. 诊断学理论与实践, 2024, 23(03): 305-312. |
[8] | 巩皓, 迟骋, 张晓霞. 外周灌注指数联合APACHE Ⅱ评分预测脓毒性休克患者28天预后的价值[J]. 内科理论与实践, 2024, 19(03): 174-179. |
[9] | 赵安琪, 杨玲, 查晴, 杨克, 刘艳. 血清艾帕素-12水平与冠状动脉钙化的相关性研究[J]. 内科理论与实践, 2024, 19(02): 107-114. |
[10] | 宋庆杰, 汤娟娟, 赵健全, 宋辉, 杨军. 高脂血症对乙肝相关肝细胞癌病人预后的影响[J]. 外科理论与实践, 2024, 29(02): 143-147. |
[11] | 林起柱, 刘红枝, 黄霆峰, 范瑞林, 周伟平, 郑树国, 楼健颖, 曾永毅. 基于肝内胆管癌预后模型筛选辅助化疗受益人群[J]. 外科理论与实践, 2024, 29(02): 170-178. |
[12] | 莫建涛, 曹瑞奇, 任加强, 耿智敏, 仵正, 程亚丽. 意外胆囊癌病人预后列线图模型的构建[J]. 外科理论与实践, 2024, 29(01): 40-45. |
[13] | 王珏, 王佳琦, 陈珩, 等.
皮肤衰老相关的生物标志物及其作用机制的研究进展
[J]. 组织工程与重建外科杂志, 2023, 19(6): 586-. |
[14] | 赵晖,文柏清,康亚妮. 使用NanoString nCounter测定结直肠癌的潜在生物标志物[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 432-. |
[15] | 贾菁怡1,李正裔1, 2,彭琳晶1,姚怡飞1. 深部组织压力损伤的早期检测方法:系统综述[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 526-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||