诊断学理论与实践 ›› 2024, Vol. 23 ›› Issue (04): 439-444.doi: 10.16150/j.1671-2870.2024.04.013
收稿日期:
2023-07-19
接受日期:
2023-10-12
出版日期:
2024-08-25
发布日期:
2024-08-25
通讯作者:
李彪 E-mail: lb10363@rjh.com.cn基金资助:
LI Zhuohan1,2, HUANG Xinyun2, GUO Rui2, LI Biao2()
Received:
2023-07-19
Accepted:
2023-10-12
Published:
2024-08-25
Online:
2024-08-25
摘要:
滤泡性淋巴瘤(follicular lymphoma, FL)是一种生物学性质复杂、临床表现异质性大的非霍奇金淋巴瘤,多累及全身淋巴结。我国约有7%的FL患者会发生组织学转化。转化为其他侵袭性淋巴瘤,因此不同FL患者的治疗策略及预后均存在较大差异。随着分子影像学技术的发展,PET/CT融合分子影像检查既能更精确识别体内微小病变又能提供病灶代谢信息。多项研究和指南均肯定了18氟-氟代脱氧葡萄糖-正电子发射断层扫描 (18F-fluorodeoxyglucose-positron emission computed tomography, 18F-FDG PET/CT)图像特征在FL识别诊断、分级分期、评价疗效和预测生存结局等过程中的重要价值。但由于尚无统一的图像扫描和阈值界定标准,目前在不同研究中PET/CT参数对FL患者具体的预后效能尚存在争议。本文综述了近年来国内外基于PET/CT图像特征,在早期识别高危FL患者及预测FL患者预后中的最新研究进展,进一步肯定了18F-FDG PET/CT检查在判断FL患者发生组织学转化的可能性以及评估其生存结局中的价值,旨在辅助临床优化诊疗决策,提高和改善患者的治疗效率和预后结局。
中图分类号:
李卓含, 黄新韵, 郭睿, 李彪. 18F-FDG PET/CT在滤泡性淋巴瘤诊断和预后评估中的研究进展[J]. 诊断学理论与实践, 2024, 23(04): 439-444.
LI Zhuohan, HUANG Xinyun, GUO Rui, LI Biao. 18F-FDG PET/CT in the diagnosis and prognosis evaluation of follicular lymphoma[J]. Journal of Diagnostics Concepts & Practice, 2024, 23(04): 439-444.
表1
不同研究中PET/CT参数对FL患者PFS的预测能力
作者 | 患者人数(例) | FL患者类型 | 纳入PET/CT的参数 | 中位数 | 截断值 | 对PFS的差异(P值) |
---|---|---|---|---|---|---|
Kuroki W, et al[ | 45 | 高肿瘤负荷FL | TMTV | 220 | 501.4 | 0.005 |
TLG | 1 173.3 | 3 284.1 | <0.001 | |||
SUVmax | 13.27 | 14.25 | 0.060 | |||
Liang J H, et al[ | 48 | FL | TMTV | 114.3 | 476.4 | 0.002 |
TLG | 594.4 | 2 676.9 | <0.001 | |||
Zhou Y, et al.[ | 84 | FL | TMTV | / | 179.84 | 0.005 |
TLG | / | 1 364.60 | 0.000 1 | |||
SUVmax | / | 10.44 | 0.043 | |||
Li H, et al.[ | 126 | 1-3a级FL | TMTV | / | 408.72 | <0.001 |
TLG | / | 1 446.98 | <0.001 | |||
SUVmax | / | 17.60 | 0.001 | |||
Dmax | / | 56.73 | <0.001 | |||
Meignan M, et al[ | 184 | 多中心高肿瘤负荷或晚期FL | TMTV | 297 | 510 | 0.002 |
[1] | Cerhan J R. Epidemiology of Follicular Lymphoma[J]. Hematol Oncol Clin North Am, 2020, 34(4):631-646. |
[2] | ZHA J, FAN L, YI S, et al. Clinical features and outcomes of 1845 patients with follicular lymphoma: a real-world multicenter experience in China[J]. J Hematol Oncol, 2021, 14(1):131. |
[3] | LI H, WANG M, ZHANG Y, et al. Prediction of prognosis and pathologic grade in follicular lymphoma using 18F-FDG PET/CT[J]. Front Oncol. 2022; 12:943151. |
[4] |
MEIGNAN M, COTTEREAU A S, VERSARI A, et al. Baseline metabolic tumor volume predicts outcome in high-tumor-burden follicular lymphoma: A pooled analysis of three multicenter studies[J]. J Clin Oncol, 2016, 34(30):3618-3626.
doi: 10.1200/JCO.2016.66.9440 pmid: 27551111 |
[5] | DÍAZ-SILVÁN A, OTÓN-SÁNCHEZ L F, CARESIA-ARÓZTEGUI A P, et al. Clinical application of [18F]FDG PET/CT in follicular lymphoma[J]. Rev Esp Med Nucl Imagen Mol (Engl Ed), 2022, 41(3):202-212. |
[6] | 张欢, 胡斌, 何柳, 等. 基线18F-FDG PET/CT显像在滤泡性淋巴瘤分布、分级和分期中的价值[J]. 现代肿瘤医学, 2023, 31(13):2496-2501. |
ZHANG H, HU B, HE L, et al. The value of baseline 18F-FDG PET/CT imaging in the distribution,grading and staging of follicular lymphoma[J]. Mod Oncol, 2023, 31: 2496-2501. | |
[7] | 中华医学会核医学分会. 淋巴瘤18F-FDG PET/CT及PET/MR显像临床应用指南(2021版)[J]. 中华核医学与分子影像杂志, 2021, 41(3):161-169. |
Chinese Society of Nuclear Medicine. Clinical practice guideline of 18F-FDG PET/CT and PET/MR in lymphoma (2021 edition)[J]. Chin J Nucl Med Imaging, 2021, 41(3):161-169. | |
[8] | KUROKI W, KITADATE A, ISHIYAMA K, et al. High baseline total lesion glycolysis predicts early progression of disease within 24 months in patients with high-tumor-burden follicular lymphoma[J]. Int J Hematol, 2022, 116(5):712-722. |
[9] | EL-GALALY T C, VILLA D, CHEAH C Y, et al. Pre-treatment total metabolic tumour volumes in lymphoma: Does quantity matter?[J]. Br J Haematol, 2022, 197(2):139-155. |
[10] | 中国抗癌协会淋巴瘤专业委员会, 中华医学会血液学分会. 中国滤泡性淋巴瘤诊断与治疗指南(2020年版)[J]. 中华血液学杂志, 2020, 41(7):537-544. |
Chinese Society of Lymphoma, Chinese Anti-cancer Association; Chinese Society of Hematology, Chinese Medical Association. Chinese guidelines for diagnosis and treatment of follicular lymphoma (2020)[J]. Chin J Hematol, 2020, 41(7):537-544. | |
[11] |
RODIER C, KANAGARATNAM L, MORLAND D, et al. Risk factors of progression in low-tumor burden follicular lymphoma initially managed by watch and wait in the era of PET and rituximab[J]. Hemasphere, 2023, 7(5):e861.
doi: 10.1097/HS9.0000000000000861 pmid: 37125257 |
[12] | LECCISOTTI L, MACCORA D, MALAFRONTE R, et al. Predicting time to treatment in follicular lymphoma on watchful waiting using baseline metabolic tumour burden[J]. J Cancer Res Clin Oncol, 2023, 149(7):2783-2791. |
[13] | YANG Q, LUO Y, ZHANG Y, et al. Baseline [18F]FDG PET/CT may predict the outcome of newly diagnosed follicular lymphoma in patients managed with initial “watch-and-wait” approach[J]. Eur Radiol, 2022, 32(8):5568-5576. |
[14] | DREVAL K, HILTON L K, CRUZ M, et al. Genetic subdivisions of follicular lymphoma defined by distinct co-ding and noncoding mutation patterns[J]. Blood, 2023, 142(6):561-573. |
[15] | STEUSSY B, LEKOSTAJ J, QIAN Q, et al. Leukemic transdifferentiation of follicular lymphoma into an acute histiocytic leukemia in a 52-year-old caucasian woman[J]. Lab Med, 2016, 47(2):155-157. |
[16] | 林志娟, 查洁, 易树华, 等. 伴弥漫大B细胞成分的初诊滤泡淋巴瘤患者的临床特征及生存[J]. 中华血液学杂志, 2022, 43(6):456-462. |
LIN Z J, ZHA J, YI S H, et al. Clinical features and outcomes of newly diagnosed follicular lymphoma concurrent with diffuse large B-cell lymphoma component[J]. Chin J Hematol, 2022, 43(6):456-462. | |
[17] | SCHÖDER H, NOY A, GÖNEN M, et al. Intensity of 18fluorodeoxyglucose uptake in positron emission tomography distinguishes between indolent and aggressive non-Hodgkin's lymphoma[J]. J Clin Oncol, 2005, 23(21):4643-4651. |
[18] | RAJAMÄKI A, KUITUNEN H, SORIGUE M, et al. FDG-PET/CT-guided rebiopsy may find clinically unsuspicious transformation of follicular lymphoma. Cancer Med. 2023; 12(1):407-411. |
[19] |
MIR F, BARRINGTON S F, BROWN H, et al. Baseline SUVmax did not predict histological transformation in follicular lymphoma in the phase 3 GALLIUM study[J]. Blood, 2020, 135(15):1214-1218.
doi: 10.1182/blood.2019001091 pmid: 31961926 |
[20] | LIPPI M, GIANOTTI S, FAMA A, et al. Texture analysis and multiple-instance learning for the classification of malignant lymphomas[J]. Comput Methods Programs Biomed, 2020, 185:105153. |
[21] | DE JESUS F M, YIN Y, MANTZOROU-KYRIAKI E, et al. Machine learning in the differentiation of follicular lymphoma from diffuse large B-cell lymphoma with radiomic [18F]FDG PET/CT features[J]. Eur J Nucl Med Mol Imaging, 2022, 49(5):1535-1543. |
[22] | KOÇAK B, DURMAZ E Ş, ATEŞ E, et al. Radiomics with artificial intelligence: a practical guide for beginners[J]. Diagn Interv Radiol, 2019, 25(6):485-495. |
[23] | LIANG J H, ZHANG Y P, XIA J, et al. Prognostic value of baseline and interim total metabolic tumor volume and total lesion glycolysis measured on 18F-FDG PET-CT in patients with follicular lymphoma[J]. Cancer Res Treat, 2019, 51(4):1479-1487. |
[24] | ZHOU Y, ZHAO Z, LI J, et al. Prognostic values of baseline, interim and end-of therapy 18F-FDG PET/CT in patients with follicular lymphoma[J]. Cancer Manag Res, 2019, 11:6871-6885. |
[25] | COTTEREAU A S, NIOCHE C, DIRAND A S, et al. 18F-FDG PET dissemination features in diffuse large b-cell lymphoma are predictive of outcome[J]. J Nucl Med, 2020, 61(1):40-45. |
[26] | EERTINK J J, VAN DE BRUG T, WIEGERS S E, et al. 18F-FDG PET baseline radiomics features improve the prediction of treatment outcome in diffuse large B-cell lymphoma[J]. Eur J Nucl Med Mol Imaging, 2022, 49(3):932-942. |
[27] |
COTTEREAU A S, MEIGNAN M, NIOCHE C, et al. Risk stratification in diffuse large B-cell lymphoma using lesion dissemination and metabolic tumor burden calculated from baseline PET/CT†[J]. Ann Oncol, 2021, 32(3):404-411.
doi: 10.1016/j.annonc.2020.11.019 pmid: 33278600 |
[28] | ZEMAN M N, AKIN E A, MERRYMAN R W, et al. Interim FDG-PET/CT for response assessment of lymphoma[J]. Semin Nucl Med, 2023, 53(3):371-388. |
[29] | JÓNA Á, KENYERES A, BARNA S, et al. Clinical and biological prognostic factors in follicular lymphoma patients[J]. PLoS One, 2022, 17(8):e0272787. |
[30] | SUN N, QIAO W, XING Y, et al. Prognostic value of interim 18F-FDG PET/CT in adult follicular lymphoma treated with R-CHOP[J]. Ann Hematol, 2023, 102(4):795-800. |
[31] | BOO S H, O J H, KWON S J, et al. Predictive value of interim and end-of-therapy 18F-FDG PET/CT in patients with follicular lymphoma[J]. Nucl Med Mol Imaging, 2019, 53(4):263-269. |
[32] |
TATSUMI M, ISOHASHI K, MATSUNAGA K, et al. Volumetric and texture analysis on FDG PET in evaluating and predicting treatment response and recurrence after chemotherapy in follicular lymphoma[J]. Int J Clin Oncol, 2019, 24(10):1292-1300.
doi: 10.1007/s10147-019-01482-2 pmid: 31165310 |
[33] | DEL PUIG CÓZAR-SANTIAGO M, GARCÍA-GARZÓN J R, MORAGAS-FREIXA M, et al. Optimisation of metabolic criteria in the prognostic assessment in patients with lymphoma. A multicentre study. Optimización de los criterios metabólicos en la valoración pronóstica de los pacientes con linfoma. Estudio multicéntrico[J]. Rev Esp Med Nucl Imagen Mol, 2017, 36(5):304-311. |
[34] |
SIBILLE L, SEIFERT R, AVRAMOVIC N, et al. 18F-FDG PET/CT uptake classification in lymphoma and lung cancer by using deep convolutional neural networks[J]. Radiology, 2020, 294(2):445-452.
doi: 10.1148/radiol.2019191114 pmid: 31821122 |
[35] | BLANC-DURAND P, JÉGOU S, KANOUN S, et al. Fully automatic segmentation of diffuse large B cell lymphoma lesions on 3D FDG-PET/CT for total metabolic tumour volume prediction using a convolutional neural network[J]. Eur J Nucl Med Mol Imaging, 2021, 48(5):1362-1370. |
[36] | GIRUM K B, REBAUD L, COTTEREAU A S, et al. 18F-FDG PET Maximum-Intensity Projections and Artificial Intelligence: A Win-Win Combination to Easily Measure Prognostic Biomarkers in DLBCL Patients[J]. J Nucl Med, 2022, 63(12):1925-1932. |
[37] | 刘娟, 颜希月, 张亚平, 等. 18F-FDG PET/CT在黏膜相关淋巴组织淋巴瘤中的预测价值[J]. 中国临床研究, 2022, 35 (05): 649-654. |
LIU J, YAN X Y, ZHANG Y P, et al. Predictive value of 18F-FDG PET/CT in mucosa---associated lymphoid tissue lymphoma[J]. Chin J Clin Res, 2022, 35(5): 649-654. | |
[38] | 王龙胜. 肺黏膜相关淋巴组织淋巴瘤的CT诊断——2023年读片窗(3) [J]. 安徽医学, 2023, 44(03): 361-362. |
WANG L S. CT diagnosis of pulmonary mucosal associated lymphoid tissue lymphoma ---2023 reading window (3)[J]. 2023, 44(03): 361-362. |
[1] | 李静, 单忠艳. 我国甲状腺功能亢进的诊治现状及挑战[J]. 诊断学理论与实践, 2024, 23(04): 347-353. |
[2] | 周建桥, 张璐, 徐上妍. 中国甲状腺结节超声诊治现状及挑战[J]. 诊断学理论与实践, 2024, 23(04): 362-370. |
[3] | 伏秋燚, 展颖, 谭令, 朱宏, 朱乃懿, 孙琨, 柴丽, 柴维敏. 全野数字乳腺X线摄影及联合数字乳腺断层合成X线摄影在乳腺癌诊断中效能评价[J]. 诊断学理论与实践, 2024, 23(04): 385-391. |
[4] | 张天翼, 严福华. 能量CT虚拟单能量图像与碘图在腹部实质性脏器疾病诊断中的应用进展[J]. 诊断学理论与实践, 2024, 23(04): 452-456. |
[5] | 朱维维, 李倩, 吴凡, 翟志敏. 100例骨髓增生异常性肿瘤患者基因突变及其与临床特征间的关系[J]. 诊断学理论与实践, 2024, 23(03): 305-312. |
[6] | 丁宁, 刘琳, 金佩佩, 王芳, 王天凯. 网织红细胞平均血红蛋白含量在缺铁性贫血及其严重程度的诊断效能分析[J]. 诊断学理论与实践, 2024, 23(03): 318-323. |
[7] | 中国老年医学学会血液学分会MDS专委会. 中国老年骨髓增生异常性肿瘤诊断和治疗专家共识(2024版)[J]. 诊断学理论与实践, 2024, 23(03): 285-296. |
[8] | 王刚, 齐金蕾, 刘馨雅, 任汝静, 林绍慧, 胡以松, 李海霞, 谢心怡, 王金涛, 李建平, 朱怡康, 高梦伊, 杨竣杰, 王怡然, 井玉荣, 耿介立, 支楠, 曹雯炜, 徐群, 余小萍, 朱圆, 周滢, 王琳, 高超, 李彬寅, 陈生弟, 袁芳, 窦荣花, 刘晓云, 李雪娜, 尹雅芙, 常燕, 徐刚, 辛佳蔚, 钟燕婷, 李春波, 王颖, 周脉耕, 陈晓春, 代表中国阿尔茨海默病报告编写组. 中国阿尔茨海默病报告2024[J]. 诊断学理论与实践, 2024, 23(03): 219-256. |
[9] | 高梦, 柴维敏, 严福华. 胰腺囊性肿瘤的CT/MRI诊断进展[J]. 诊断学理论与实践, 2024, 23(02): 184-191. |
[10] | 黄睿, 饶慧瑛. “消除”背景下的丙型肝炎病毒感染现状及筛查、诊断对策[J]. 诊断学理论与实践, 2024, 23(01): 1-8. |
[11] | 姜绍文, 周惠娟, 谢青. 我国原发性肝癌筛查的现状、挑战及发展方向[J]. 诊断学理论与实践, 2024, 23(01): 9-15. |
[12] | 周妍, 张旻. 我国轻度支气管哮喘诊治现状及对策[J]. 诊断学理论与实践, 2023, 22(06): 520-526. |
[13] | 倪仲馨, 陈慧. ADNEX模型鉴别转移性与原发性卵巢癌的诊断效能研究[J]. 诊断学理论与实践, 2023, 22(06): 573-578. |
[14] | 王书奎, 顾心亮. tsRNA作为肿瘤诊断和预后标志物的研究进展[J]. 诊断学理论与实践, 2023, 22(05): 413-420. |
[15] | 戴靖宜, 蒋敬庭. 肝细胞肝癌肿瘤标志物诊断的新进展[J]. 诊断学理论与实践, 2023, 22(05): 486-493. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||