内科理论与实践 ›› 2024, Vol. 19 ›› Issue (05): 328-332.doi: 10.16138/j.1673-6087.2024.05.08
收稿日期:
2024-04-11
出版日期:
2024-10-28
发布日期:
2025-01-16
通讯作者:
幸世峰 E-mail:1186368349@qq.com
基金资助:
Received:
2024-04-11
Online:
2024-10-28
Published:
2025-01-16
摘要:
心血管疾病仍然是世界上最常见的死亡原因之一,在过去,及时的再灌注治疗大大减少了疾病死亡率,同时促进了血液的恢复和心肌细胞的复苏。缺血再灌注(ischemia reperfusion, IR)损伤是许多临床实践中不可避免的病理过程,心肌IR损伤的机制包括线粒体自噬、细胞凋亡等多种病理过程,这些信号通路相互关联和作用。其中,线粒体自噬作为一种选择性自噬受到广泛关注,通过调节线粒体的质量与数量维持心肌细胞的正常运行,但当受到氧化应激、缺血、缺氧等刺激时,过度的线粒体自噬或线粒体自噬不足均可影响心肌细胞功能,甚至导致心肌细胞死亡,因此应严格控制心肌细胞中线粒体自噬的激活程度。故本文就线粒体自噬在心肌IR损伤中的机制及进展作一综述,旨在能够为心肌IR损伤的研究提供一些助力。
中图分类号:
高悦, 幸世峰. 线粒体自噬在心肌缺血再灌注损伤中的机制[J]. 内科理论与实践, 2024, 19(05): 328-332.
GAO Yue, XING Shifeng. Mechanism of mitochondrial autophagy in myocardial ischemia-reperfusion injury[J]. Journal of Internal Medicine Concepts & Practice, 2024, 19(05): 328-332.
[1] | Giacomello M, Pyakurel A, Glytsou C, et al. The cell biology of mitochondrial membrane dynamics[J]. Nat Rev Mol Cell Biol, 2020, 21(4):204-224. |
[2] | Marzetti E, Calvani R, Landi F, et al. Mitochondrial quality control processes at the crossroads of cell death and survival: mechanisms and signaling pathways[J]. Int J Mol Sci, 2024, 25(13):7305. |
[3] | Nakatogawa H. Mechanisms governing autophagosome biogenesis[J]. Nat Rev Mol Cell Biol, 2020, 21(8):439-458. |
[4] |
Gatica D, Lahiri V, Klionsky DJ. Cargo recognition and degradation by selective autophagy[J]. Nat Cell Biol, 2018, 20(3):233-242.
doi: 10.1038/s41556-018-0037-z pmid: 29476151 |
[5] |
He J, Liu D, Zhao L, et al. Myocardial ischemia/reperfusion injury: mechanisms of injury and implications for management (Review)[J]. Exp Ther Med, 2022, 23(6):430.
doi: 10.3892/etm.2022.11357 pmid: 35607376 |
[6] | 张小赏, 童随阳, 操传斌. 紫苏醛对大鼠心肌缺血/再灌注损伤诱导的自噬的影响[J]. 湖北医药学院学报, 2022, 41(03):224-228. |
[7] | De Duve C, Pressman BC, Gianetto R, et al. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue[J]. Biochem J, 1955, 60(4):604-617. |
[8] | Rasool S, Veyron S, Soya N, et al. Mechanism of PINK1 activation by autophosphorylation and insights into assembly on the TOM complex[J]. Mol Cell, 2022, 82(1):44-59.e6. |
[9] | Vranas M, Lu Y, Rasool S, et al. Selective localization of Mfn2 near PINK1 enables its preferential ubiquitination by Parkin on mitochondria[J]. Open Biol, 2022, 12(1):210255. |
[10] |
Tu M, Tan VP, Yu JD, et al. RhoA signaling increases mitophagy and protects cardiomyocytes against ischemia by stabilizing PINK1 protein and recruiting Parkin to mitochondria[J]. Cell Death Differ, 2022, 29(12):2472-2486.
doi: 10.1038/s41418-022-01032-w pmid: 35760846 |
[11] | Wang M, Wan C, He T, et al. Sigma-1 receptor regulates mitophagy in dopaminergic neurons and contributes to dopaminergic protection[J]. Neuropharmacology, 2021, 196:108360. |
[12] | Qi MM, Sun RM, Wang QY, et al. Astragaloside iv improved oxidative stress induced injury through pink1/parkin-mediated mitophagy in h9c2 cells[J]. J Hypertens Suppl, 2023,41 Suppl 3:e253. |
[13] |
Xia N, Strand S, Schlufter F, et al. Role of SIRT1 and FOXO factors in eNOS transcriptional activation by resveratrol[J]. Nitric Oxide, 2013, 32:29-35.
doi: 10.1016/j.niox.2013.04.001 pmid: 23583951 |
[14] |
Yi C, Tong J, Lu P, et al. Formation of a Snf1-Mec1-Atg1 module on mitochondria governs energy deprivation-induced autophagy by regulating mitochondrial respiration[J]. Dev Cell, 2017, 41(1):59-71.
doi: S1534-5807(17)30160-0 pmid: 28399401 |
[15] | 张贵君, 汪瑶, 李军令, 等. 电针对帕金森病小鼠SIRT3/PINK1/Parkin通路介导的线粒体自噬的影响[J]. 针刺研究, 2024, 49(03):221-230. |
[16] | Guan S, Xin Y, Ding Y, et al. Ginsenoside Rg1 protects against cardiac remodeling in heart failure via SIRT1/PINK1/Parkin-mediated mitophagy[J]. Chem Biodivers, 2023, 20(2):e202200730. |
[17] | Li S, Zhang J, Liu C, et al. The role of mitophagy in regulating cell death[J]. Oxid Med Cell Longev, 2021, 2021:6617256. |
[18] | 胡丽君, 魏燕, 贺行巍, 等. 过表达双特异性蛋白磷酸酶1通过调节自噬作用减轻阿霉素诱导的心肌细胞凋亡和心肌纤维化[J]. 岭南心血管病杂志, 2023, 29(02):190-197. |
[19] | Rahman M, Nguyen TM, Lee GJ, et al. Unraveling the role of ras homolog enriched in brain (rheb1 and rheb2): bridging neuronal dynamics and cancer pathogenesis through mechanistic target of rapamycin signaling[J]. Int J Mol Sci, 2024, 25(3):1489. |
[20] | 赵辉. 基于PI3K-AKT-mTORC1信号通路研究参地颗粒对慢性肾炎患者及MsPGN大鼠线粒体自噬的调节作用[D]. 安徽中医药大学, 2020. |
[21] |
Zhang T, Xue L, Li L, et al. BNIP3 protein suppresses PINK1 kinase proteolytic cleavage to promote mitophagy[J]. J Biol Chem, 2016, 291(41):21616-21629.
pmid: 27528605 |
[22] |
Li A, Gao M, Liu B, et al. Mitochondrial autophagy: molecular mechanisms and implications for cardiovascular disease[J]. Cell Death Dis, 2022, 13(5):444.
doi: 10.1038/s41419-022-04906-6 pmid: 35534453 |
[23] | Gok MO, Connor OM, Wang X, et al. The outer mitochondrial membrane protein TMEM11 demarcates spatially restricted BNIP3/BNIP3L-mediated mitophagy[J]. J Cell Biol, 2023, 222(4):e202204021. |
[24] |
Yang L, Xie P, Wu J, et al. Deferoxamine treatment combined with sevoflurane postconditioning attenuates myocardial ischemia-reperfusion injury by restoring HIF-1/BNIP3-mediated mitochondrial autophagy in GK rats[J]. Front Pharmacol, 2020, 11:6.
doi: 10.3389/fphar.2020.00006 pmid: 32140105 |
[25] | Zhang W. The mitophagy receptor FUN14 domain-containing 1 (FUNDC1): a promising biomarker and potential therapeutic target of human diseases[J]. Genes Dis, 2020, 8(5):640-654. |
[26] |
Zhou H, Zhu P, Guo J, et al. Ripk3 induces mitochondrial apoptosis via inhibition of FUNDC1 mitophagy in cardiac IR injury[J]. Redox Biol, 2017, 13:498-507.
doi: S2213-2317(17)30425-1 pmid: 28732308 |
[27] | Turkieh A, El Masri Y, Pinet F, et al. Mitophagy regulation following myocardial infarction[J]. Cells, 2022, 11(2):199. |
[28] |
Titus AS, Sung EA, Zablocki D, et al. Mitophagy for cardioprotection[J]. Basic Res Cardiol, 2023, 118(1):42.
doi: 10.1007/s00395-023-01009-x pmid: 37798455 |
[29] | Tan N, Liu T, Wang X, et al. The multi-faced role of FUNDC1 in mitochondrial events and human diseases[J]. Front Cell Dev Biol, 2022, 10:918943. |
[30] | Bragoszewski P, Turek M, Chacinska A. Control of mitochondrial biogenesis and function by the ubiquitin-proteasome system[J]. Open Biol, 2017, 7(4):170007. |
[31] | Mao Y, Ren J, Yang L. FUN14 domain containing 1 (FUNDC1): a promising mitophagy receptor regulating mitochondrial homeostasis in cardiovascular diseases[J]. Front Pharmacol, 2022, 13:887045. |
[32] | Choubey V, Zeb A, Kaasik A. Molecular mechanisms and regulation of mammalian mitophagy[J]. Cells, 2021, 11(1):38. |
[33] | Varela YR, González-Ramírez EJ, Iriondo MN, et al. Lipids in mitochondrial macroautophagy: phase behavior of bilayers containing cardiolipin and ceramide[J]. Int J Mol Sci, 2023, 24(6):5080. |
[34] | Pilátová MB, Solárová Z, Mezencev R, et al. Ceramides and their roles in programmed cell death[J]. Adv Med Sci, 2023, 68(2):417-425. |
[35] | Sheridan M, Ogretmen B. The role of ceramide metabolism and signaling in the regulation of mitophagy and cancer therapy[J]. Cancers (Basel), 2021, 13(10):2475. |
[1] | 盛兆晴, 刘晓红. 阿尔茨海默病自噬相关基因的筛选及其通路分析[J]. 内科理论与实践, 2024, 19(04): 236-242. |
[2] | 何嫣婕, 何美娟, 王韵, 朱春雪, 黄汉鹏. 匹诺塞林通过抑制自噬减轻慢性间歇性缺氧诱导的BEAS-2B细胞损伤[J]. 内科理论与实践, 2024, 19(02): 115-120. |
[3] | 贾昕宇, 李发成. 自体脂肪移植后细胞存活与再生中自噬机制的研究进展[J]. 组织工程与重建外科杂志, 2023, 19(4): 420-. |
[4] | 孙家园 侯瑞 张如鸿.
缺血再灌注损伤性皮瓣坏死的防治进展
[J]. 组织工程与重建外科杂志, 2023, 19(2): 193-. |
[5] | 张晓艺 张浩. 泛醌对大鼠背部皮瓣缺血再灌注损伤的作用与影响[J]. 组织工程与重建外科杂志, 2022, 18(4): 305-. |
[6] | 李恒宇, 李嘉图, 林莹妮, 李红鹏, 李庆云,. 氢气医学研究中给氢方式选择及研究进展[J]. 内科理论与实践, 2020, 15(01): 53-56. |
[7] | 张超, 王伟艺, 唐文皓. 自噬在胰腺癌及其治疗中作用的研究进展[J]. 外科理论与实践, 2019, 24(06): 555-559. |
[8] | 郑晴晴, 赵佑山, 常春康. 线粒体形态变化对线粒体自噬水平的影响[J]. 诊断学理论与实践, 2017, 16(04): 442-445. |
[9] | 冯蓓蕾, 王刚, 陆逸莹, 王翘楚,. 花生枝叶水煎液对大鼠脑缺血再灌注模型的保护作用及机制研究[J]. 内科理论与实践, 2017, 12(02): 115-119. |
[10] | 王楠, 崔鸣, 张舒,. 自噬与心肌肥厚及心力衰竭[J]. 内科理论与实践, 2016, 11(05): 322-326. |
[11] | 陆美玲, 王金龙, 施敏敏, 陈皓, 陈尔真,. 霉酚酸酯对脓毒症肝损伤的保护作用[J]. 外科理论与实践, 2016, 21(01): 66-70. |
[12] | 卢孔渺, 王海嵘, 刘清华, 葛晓利, 刘宣, 沈勇, 潘曙明,. 高压氧对永久性大脑中动脉栓塞大鼠心肾组织自噬活性的影响[J]. 内科理论与实践, 2015, 10(03): 193-198. |
[13] | 徐北惠, 陆君涛, 倪培华,. 自噬对肿瘤形成的双重调节作用及相关机制[J]. 诊断学理论与实践, 2015, 14(01): 75-78. |
[14] | 赵思达, 常春康,. p53与细胞衰老关系的研究进展[J]. 诊断学理论与实践, 2014, 13(06): 636-639. |
[15] | 徐北惠, 梁璆荔, 倪培华,. 乳腺癌细胞自噬与相关miRNA研究进展[J]. 诊断学理论与实践, 2014, 13(04): 429-432. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||