内科理论与实践 ›› 2024, Vol. 19 ›› Issue (04): 236-242.doi: 10.16138/j.1673-6087.2024.04.04
收稿日期:
2024-01-22
出版日期:
2024-08-28
发布日期:
2024-11-11
通讯作者:
刘晓红 E-mail:lxhhome12@hotmail.com
SHENG Zhaoqing, LIU Xiaohong()
Received:
2024-01-22
Online:
2024-08-28
Published:
2024-11-11
摘要:
目的:基于微阵列分析筛选阿尔茨海默病(Alzheimer disease,AD)自噬相关基因,并进行通路分析,鉴定关键基因,以期探究潜在的发病机制与治疗靶点。方法:从GEO数据库下载GSE33000数据集,通过R软件limma包获取AD差异表达基因,从人类自噬基因数据库、人类自噬调节因子数据库及GeneCard数据库分别下载自噬相关基因,获得自噬相关基因集,将差异表达基因与自噬相关基因集取交集,获得AD自噬相关基因。使用R软件org.Hs.eg.db、clusterProfiler等程序包进行基因本体论(gene ontology,GO)分析、京都基因和基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG)分析,利用在线软件STRING进行蛋白互作网络分析,并基于最大团中心性(maximal clique centrality,MCC)算法进行关键基因预测。结果:共获得66个AD自噬相关基因,其中41个基因上调,25个基因下调。基因富集分析显示,GO分析中细胞组分主要富集在吞噬小泡膜、分泌颗粒膜、膜微结构域、晚期内体等,分子功能主要富集在结合Toll样受体、结合泛素连接酶等,生物学过程富集在调节自噬、细胞分解代谢的调节、脂多糖诱导的反应、调节炎症反应、外部刺激的细胞反应等。在KEGG富集分析中,差异表达的自噬相关基因主要富集在NOD样受体信号通路、脂质与动脉粥样硬化、叉头框蛋白O(forkhead box protein O,FoxO)信号通路等。完成蛋白互作网络(protein-protein interaction,PPI)的构建,同时鉴定出10个关键基因,筛选出与AD关联较大的为白介素-6(interleukin -6,IL-6)、信号转导与转录激活因子3(signal transducer and activator of transcription 3, STAT3)。结论:本研究获得10个关键ADARG,其中与AD关联较大的为IL-6、STAT3。
中图分类号:
盛兆晴, 刘晓红. 阿尔茨海默病自噬相关基因的筛选及其通路分析[J]. 内科理论与实践, 2024, 19(04): 236-242.
SHENG Zhaoqing, LIU Xiaohong. Screening and pathway analysis of autophagy-related genes in Alzheimer disease[J]. Journal of Internal Medicine Concepts & Practice, 2024, 19(04): 236-242.
表1
差异表达的ARG
基因 | log2 FC | FDR | 上调/下调 |
---|---|---|---|
S100A8 | 0.734 430 653 | 1.294 75E-41 | 上调 |
S100A9 | 0.631 580 392 | 2.997 15E-41 | 上调 |
GFAP | 0.609 292 049 | 4.453 38E-55 | 上调 |
BAG3 | 0.446 585 26 | 5.753 08E-48 | 上调 |
SPP1 | 0.419 081 46 | 2.439 46E-40 | 上调 |
DDIT4 | 0.387 251 516 | 5.005 39E-49 | 上调 |
CDKN1A | 0.368 832 806 | 2.884 3E-44 | 上调 |
NFKBIA | 0.363 802 97 | 8.647 81E-75 | 上调 |
IL6 | 0.359 681 502 | 3.796 82E-17 | 上调 |
CCL2 | 0.345 877 034 | 7.361 13E-31 | 上调 |
GJA4 | 0.334 011 564 | 1.492 26E-45 | 上调 |
TNFRSF10B | 0.309 289 337 | 2.784 55E-69 | 上调 |
PDK4 | 0.283 985 514 | 1.619 89E-26 | 上调 |
CEBPB | 0.282 784 748 | 4.097 13E-59 | 上调 |
CXCR4 | 0.274 577 193 | 4.684 29E-34 | 上调 |
TREM2 | 0.274 073 704 | 2.786 42E-35 | 上调 |
SERPINH1 | 0.270 492 92 | 3.114 4E-31 | 上调 |
CASP1 | 0.263 382 958 | 9.255 49E-51 | 上调 |
HMOX1 | 0.256 356 446 | 1.288 31E-36 | 上调 |
CASP4 | 0.253 136 162 | 1.349 79E-51 | 上调 |
IL10RA | 0.252 086 766 | 7.222 95E-48 | 上调 |
TRIM22 | 0.251 133 782 | 6.561 9E-55 | 上调 |
VAMP8 | 0.249 623 31 | 9.593 4E-50 | 上调 |
MYD88 | 0.249 228 915 | 1.156 73E-51 | 上调 |
LAMP2 | 0.247 986 568 | 4.413 14E-40 | 上调 |
KDR | 0.242 699 838 | 1.689 45E-17 | 上调 |
CYBB | 0.241 577 351 | 1.078 61E-28 | 上调 |
ITGB4 | 0.236 962 537 | 1.708 02E-47 | 上调 |
NFE2L2 | 0.231 527 954 | 2.941 17E-59 | 上调 |
MCL1 | 0.231 458 541 | 1.725 39E-52 | 上调 |
DCN | 0.228 229 134 | 2.220 71E-29 | 上调 |
RELA | 0.224 802 04 | 1.358 85E-59 | 上调 |
SLC1A5 | 0.223 657 939 | 4.543 77E-50 | 上调 |
ITPR3 | 0.221 584 092 | 1.796 88E-42 | 上调 |
TCIRG1 | 0.219 778 682 | 5.358 93E-53 | 上调 |
PLCE1 | 0.219 757 497 | 5.667 72E-65 | 上调 |
NFKBIZ | 0.217 692 335 | 1.087 39E-40 | 上调 |
MYC | 0.213 477 663 | 2.334 41E-36 | 上调 |
NDRG1 | 0.211 367 782 | 2.057 29E-33 | 上调 |
LGALS3 | 0.209 718 41 | 1.968 45E-29 | 上调 |
STAT3 | 0.206 894 233 | 1.137 87E-56 | 上调 |
DUSP4 | -0.499 845 019 | 1.766 41E-60 | 下调 |
CAMK4 | -0.494 161 901 | 2.063 21E-74 | 下调 |
BDNF | -0.477 357 958 | 5.418 81E-81 | 下调 |
PAK1 | -0.469 712 144 | 1.555 31E-70 | 下调 |
IGF1 | -0.392 947 702 | 1.648 13E-67 | 下调 |
TBC1D9 | -0.331 515 013 | 4.391 44E-54 | 下调 |
MAP2K1 | -0.279 448 405 | 2.363 26E-32 | 下调 |
PLK2 | -0.278 443 738 | 1.786 23E-46 | 下调 |
HSPA8 | -0.255 422 758 | 6.227 56E-28 | 下调 |
GABBR2 | -0.235 543 436 | 1.284 5E-48 | 下调 |
CAMKK2 | -0.235 461 651 | 1.826 4E-67 | 下调 |
PRNP | -0.234 526 608 | 7.010 57E-35 | 下调 |
RALB | -0.231 614 543 | 3.131 96E-43 | 下调 |
MAPK8 | -0.229 246 562 | 1.221 77E-29 | 下调 |
VDAC1 | -0.229 196 778 | 4.274 23E-51 | 下调 |
SNCA | -0.226 627 217 | 2.682 88E-54 | 下调 |
HIVEP2 | -0.225 398 91 | 2.151 41E-42 | 下调 |
KIAA1524 | -0.224 809 135 | 1.178 74E-36 | 下调 |
CDKN2D | -0.221 703 258 | 1.496 62E-79 | 下调 |
GABARAPL1 | -0.214 767 25 | 7.058 2E-60 | 下调 |
PIK3CB | -0.213 074 216 | 7.147 73E-27 | 下调 |
VDAC2 | -0.210 329 444 | 7.610 65E-52 | 下调 |
FBXL2 | -0.208 120 876 | 1.005 31E-49 | 下调 |
NRG3 | -0.205 871 654 | 1.082 04E-42 | 下调 |
TBC1D7 | -0.204 288 881 | 2.941 05E-43 | 下调 |
表2
关键基因及其MCC评分
基因 | 英文全称 | MCC评分 |
---|---|---|
IL-6 | interleukin 6 | 244 380 |
STAT3 | signal transducer and activator of transcription 3 | 244 225 |
NFKBIA | nuclear factor-kappaB inhibitor alpha | 213 723 |
MAPK8 | mitogen-activated protein kinase 8 | 184 714 |
CCL2 | CC chemokine ligand 2 | 169 968 |
MYC | myelocytomatosis viral oncogene homolog | 136 967 |
HMOX1 | heme oxygenase 1 | 108 768 |
RELA | v-rel reticuloendotheliosis viral oncogene homolog A (avian) | 107 766 |
CASP1 | caspase-1 | 106 712 |
NFE2L2 | nuclear factor erythroid2-like-2 | 90 721 |
[1] |
Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s disease[J]. Lancet, 2021, 397(10284):1577-1590.
doi: 10.1016/S0140-6736(20)32205-4 pmid: 33667416 |
[2] | 王刚, 齐金蕾, 刘馨雅, 等. 中国阿尔茨海默病报告2024[J]. 诊断学理论与实践, 2024, 23(3):219-256. |
[3] |
Levine B, Kroemer G. Autophagy in the pathogenesis of disease[J]. Cell, 2008, 132(1):27-42.
doi: 10.1016/j.cell.2007.12.018 pmid: 18191218 |
[4] |
Pickford F, Masliah E, Britschgi M, et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice[J]. J Clin Invest, 2008, 118(6):2190-2199.
doi: 10.1172/JCI33585 pmid: 18497889 |
[5] | Nixon RA, Wegiel J, Kumar A, et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study[J]. J Neuropathol Exp Neurol, 2005, 64(2):113-122. |
[6] | Yu WH, Cuervo AM, Kumar A, et al. Macroautophagy-a novel β-amyloid peptide-generating pathway activated in Alzheimer’s disease[J]. J Cell Biol, 2005, 171(1):87-98. |
[7] |
Menzies FM, Fleming A, Caricasole A, et al. Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities[J]. Neuron, 2017, 93(5):1015-1034.
doi: S0896-6273(17)30046-6 pmid: 28279350 |
[8] |
Nilsson P, Loganathan K, Sekiguchi M, et al. Aβ secretion and plaque formation depend on autophagy[J]. Cell Rep, 2013, 5(1):61-69.
doi: 10.1016/j.celrep.2013.08.042 pmid: 24095740 |
[9] | Uddin MS, Mamun AA, Labu ZK, et al. Autophagic dysfunction in Alzheimer’s disease: cellular and molecular mechanistic approaches to halt Alzheimer’s pathogenesis[J]. J Cell Physiol, 2019, 234(6):8094-8112. |
[10] |
Motta V, Soares F, Sun T, et al. NOD-like receptors: versatile cytosolic sentinels[J]. Physiol Rev, 2015, 95(1):149-178.
doi: 10.1152/physrev.00009.2014 pmid: 25540141 |
[11] |
Jounai N, Kobiyama K, Shiina M, et al. NLRP4 negatively regulates autophagic processes through an association with beclin1[J]. J Immunol, 2011, 186(3):1646-1655.
doi: 10.4049/jimmunol.1001654 pmid: 21209283 |
[12] |
Zhang Y, Sauler M, Shinn AS, et al. Endothelial PINK1 mediates the protective effects of NLRP3 deficiency during lethal oxidant injury[J]. J Immunol, 2014, 192(11):5296-5304.
doi: 10.4049/jimmunol.1400653 pmid: 24778451 |
[13] |
Wlodarska M, Thaiss CA, Nowarski R, et al. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion[J]. Cell, 2014, 156(5):1045-1059.
doi: 10.1016/j.cell.2014.01.026 pmid: 24581500 |
[14] | Chen Y, Zeng A, He S, et al. Autophagy-related genes in atherosclerosis[J]. J Healthc Eng, 2021,2021:6402206. |
[15] | Shao BZ, Han BZ, Zeng YX, et al. The roles of macrophage autophagy in atherosclerosis[J]. Acta Pharmacol Sin, 2016, 37(2):150-156. |
[16] | Menghini R, Casagrande V, Marino A, et al. MiR-216a: a link between endothelial dysfunction and autophagy[J]. Cell Death Dis, 2014, 5(1):e1029. |
[17] | Li H, Huang S, Wang S, et al. Targeting annexin A7 by a small molecule suppressed the activity of phosphatidylcholine-specific phospholipase C in vascular endothelial cells and inhibited atherosclerosis in apolipoprotein E⁻/⁻mice[J]. Cell Death Dis, 2013, 4(9):e806. |
[18] |
Roher AE, Esh C, Kokjohn TA, et al. Circle of willis atherosclerosis is a risk factor for sporadic Alzheimer’s disease[J]. Arterioscler Thromb Vasc Biol, 2003, 23(11):2055-2062.
doi: 10.1161/01.ATV.0000095973.42032.44 pmid: 14512367 |
[19] |
Roher AE, Tyas SL, Maarouf CL, et al. Intracranial atherosclerosis as a contributing factor to Alzheimer’s disease dementia[J]. Alzheimers Dement, 2011, 7(4):436-444.
doi: 10.1016/j.jalz.2010.08.228 pmid: 21388893 |
[20] |
Arvanitakis Z, Capuano AW, Leurgans SE, et al. Relation of cerebral vessel disease to Alzheimer’s disease dementia and cognitive function in elderly people: a cross-sectional study[J]. Lancet Neurol, 2016, 15(9):934-943.
doi: S1474-4422(16)30029-1 pmid: 27312738 |
[21] | Liu L, Tao Z, Zheng LD, et al. FoxO1 interacts with transcription factor EB and differentially regulates mitochondrial uncoupling proteins via autophagy in adipocytes[J]. Cell Death Discov, 2016,2:16066. |
[22] | Wang S, Xia P, Huang G, et al. FoxO1-mediated autophagy is required for NK cell development and innate immunity[J]. Nat Commun, 2016,7:11023. |
[23] |
Baek SH, Kim KI. Epigenetic control of autophagy: nuclear events gain more attention[J]. Mol Cell, 2017, 65(5):781-785.
doi: S1097-2765(16)30870-X pmid: 28257699 |
[24] |
Hu F, Song D, Yan Y, et al. IL-6 regulates autophagy and chemotherapy resistance by promoting BECN1 phosphorylation[J]. Nat Commun, 2021, 12(1):3651.
doi: 10.1038/s41467-021-23923-1 pmid: 34131122 |
[25] | Lyra E Silva NM, Gonçalves RA, Pascoal TA, et al. Pro-inflammatory interleukin-6 signaling links cognitive impairments and peripheral metabolic alterations in Alzheimer’s disease[J]. Transl Psychiatry, 2021, 11(1):251. |
[26] | 田密, 侯德仁, 邓炎尧, 等. STAT3与P-STAT3在转基因AD小鼠脑组织中的表达及意义[J]. 南方医科大学学报, 2013, 33(12):1778-1782. |
[27] |
You L, Wang Z, Li H, et al. The role of STAT3 in autophagy[J]. Autophagy, 2015, 11(5):729-739.
doi: 10.1080/15548627.2015.1017192 pmid: 25951043 |
[28] | Reichenbach N, Delekate A, Plescher M, et al. Inhibition of Stat3-mediated astrogliosis ameliorates pathology in an Alzheimer’s disease model[J]. EMBO Mol Med, 2019, 11(2):e9665. |
[29] | Choi M, Kim H, Yang EJ, et al. Inhibition of STAT3 phosphorylation attenuates impairments in learning and memory in 5XFAD mice, an animal model of Alzheimer’s disease[J]. J Pharmacol Sci, 2020, 143(4):290-299. |
[30] | Sarkar S. Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers[J]. Biochem Soc Trans, 2013, 41(5):1103-1130. |
[31] |
Schmukler E, Michaelson DM, Pinkas-Kramarski R. The interplay between apolipoprotein E4 and the autophagic-endocytic-lysosomal axis[J]. Mol Neurobiol, 2018, 55(8):6863-6880.
doi: 10.1007/s12035-018-0892-4 pmid: 29353455 |
[1] | 郑鸿鲲, 单圣周, 季向阳, 等.
病理性瘢痕的多组学方法研究进展
[J]. 组织工程与重建外科杂志, 2024, 20(3): 362-. |
[2] | 李凯祥, 罗润娇, 于新迪, 等.
不同转染方式用于modRNA转染人脂肪干细胞的初步研究
[J]. 组织工程与重建外科杂志, 2024, 20(3): 275-. |
[3] | 汪卓鑫, 黄昕洋, 金依洵, 王立夫. 通过机器学习识别急性胰腺炎的铜死亡特征基因[J]. 内科理论与实践, 2024, 19(04): 224-230. |
[4] | 唐筱璐, 华鑫, 曹璐, 陈佳艺. 21基因检测在早期乳腺癌辅助放疗中的应用[J]. 外科理论与实践, 2024, 29(03): 270-276. |
[5] | 徐珊, 徐超. 老年胃癌整体评估及系统治疗现状[J]. 内科理论与实践, 2024, 19(03): 193-196. |
[6] | 王刚, 齐金蕾, 刘馨雅, 任汝静, 林绍慧, 胡以松, 李海霞, 谢心怡, 王金涛, 李建平, 朱怡康, 高梦伊, 杨竣杰, 王怡然, 井玉荣, 耿介立, 支楠, 曹雯炜, 徐群, 余小萍, 朱圆, 周滢, 王琳, 高超, 李彬寅, 陈生弟, 袁芳, 窦荣花, 刘晓云, 李雪娜, 尹雅芙, 常燕, 徐刚, 辛佳蔚, 钟燕婷, 李春波, 王颖, 周脉耕, 陈晓春, 代表中国阿尔茨海默病报告编写组. 中国阿尔茨海默病报告2024[J]. 诊断学理论与实践, 2024, 23(03): 219-256. |
[7] | 朱维维, 李倩, 吴凡, 翟志敏. 100例骨髓增生异常性肿瘤患者基因突变及其与临床特征间的关系[J]. 诊断学理论与实践, 2024, 23(03): 305-312. |
[8] | 倪亚平, 陈一峰, 杨晓群, 陈晓炎. 原发性肺腺癌伴肠母细胞分化2例临床病理及预后分析[J]. 诊断学理论与实践, 2024, 23(03): 324-329. |
[9] | 欧丹, 蔡钢, 陈佳艺. RAD51AP1基因表达在三阴性乳腺癌脑转移中的生物信息分析[J]. 诊断学理论与实践, 2024, 23(02): 146-154. |
[10] | 何嫣婕, 何美娟, 王韵, 朱春雪, 黄汉鹏. 匹诺塞林通过抑制自噬减轻慢性间歇性缺氧诱导的BEAS-2B细胞损伤[J]. 内科理论与实践, 2024, 19(02): 115-120. |
[11] | 吴熊焰, 李臻, 俞振佳, 苏丽萍. 假基因FMO6P抑制胃癌侵袭转移作用及其机制探索[J]. 外科理论与实践, 2024, 29(02): 161-169. |
[12] | 吴文娟, 田文杰. 人类呼吸道微生物组及检测技术进展[J]. 内科理论与实践, 2024, 19(01): 37-42. |
[13] | 张莉莉, 谢思敏, 冯耘, $\boxed{\hbox{陈虹}}$. mNGS拟诊重症Ⅰ型单纯疱疹病毒肺炎4例诊治并文献复习[J]. 内科理论与实践, 2024, 19(01): 43-50. |
[14] | 卢捷, 谢青. 慢性戊型肝炎的诊治进展[J]. 诊断学理论与实践, 2024, 23(01): 16-22. |
[15] | 2030脑与类脑计划变性病痴呆多模影像诊断标准及分子影像技术研究课题组, 上海市衰老与退行性疾病学会衰老与认知障碍分会. 痴呆及相关认知障碍的神经影像学诊断专家共识(2023年版)[J]. 诊断学理论与实践, 2024, 23(01): 30-39. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||