内科理论与实践 ›› 2021, Vol. 16 ›› Issue (06): 376-380.doi: 10.16138/j.1673-6087.2021.06.002
陈刚1,2, 郑泽宇1,2
收稿日期:
2021-06-07
出版日期:
2021-12-27
发布日期:
2022-07-25
基金资助:
Received:
2021-06-07
Online:
2021-12-27
Published:
2022-07-25
中图分类号:
陈刚, 郑泽宇. 单细胞转录组学分析在胰岛β细胞生理研究中的应用进展[J]. 内科理论与实践, 2021, 16(06): 376-380.
[1] |
Arzalluz-Luque á, Conesa A. Single-cell RNAseq for the study of isoforms-how is that possible?[J]. Genome Biol, 2018, 19(1): 110.
doi: 10.1186/s13059-018-1496-z pmid: 30097058 |
[2] | Habib N, Avraham-Davidi I, Basu A, et al. Massively parallel single-nucleus RNA-seq with DroNc-seq[J]. Nat Methods, 2017, 14(10): 955-958. |
[3] |
Hashimshony T, Senderovich N, Avital G, et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq[J]. Genome Biol, 2016, 17: 77.
doi: 10.1186/s13059-016-0938-8 pmid: 27121950 |
[4] |
Ackermann AM, Wang Z, Schug J, et al. Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes[J]. Mol Metab, 2016, 5(3): 233-244.
doi: S2212-8778(16)00003-X pmid: 26977395 |
[5] |
Li J, Klughammer J, Farlik M, et al. Single-cell transcriptomes reveal characteristic features of human pancreatic islet cell types[J]. EMBO Rep, 2016, 17(2): 178-187.
doi: 10.15252/embr.201540946 URL |
[6] |
Wang YJ, Golson ML, Schug J, et al. Single-cell mass cytometry analysis of the human endocrine pancreas[J]. Cell Metab, 2016, 24(4): 616-626.
doi: S1550-4131(16)30486-7 pmid: 27732837 |
[7] |
Xin Y, Kim J, Okamoto H, et al. RNA sequencing of single human islet cells reveals type 2 diabetes genes[J]. Cell Metab, 2016, 24(4): 608-615.
doi: 10.1016/j.cmet.2016.08.018 URL |
[8] |
Muraro MJ, Dharmadhikari G, Grün D, et al. A single-cell transcriptome atlas of the human pancreas[J]. Cell Syst, 2016, 3(4): 385-394.
doi: S2405-4712(16)30292-7 pmid: 27693023 |
[9] |
Zhou Y, Duan S, Zhou Y, et al. Sulfiredoxin-1 attenuates oxidative stress via Nrf2/ARE pathway and 2-Cys Prdxs after oxygen-glucose deprivation in astrocytes[J]. J Mol Neurosci, 2015, 55(4): 941-950.
doi: 10.1007/s12031-014-0449-6 URL |
[10] | Baron M, Veres A, Wolock SL, et al. A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure[J]. Cell Syst, 2016, 3(4): 346-360. |
[11] |
Segerstolpe Å, Palasantza A, Eliasson P, et al. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes[J]. Cell Metab, 2016, 24(4): 593-607.
doi: S1550-4131(16)30436-3 pmid: 27667667 |
[12] |
Roscioni SS, Migliorini A, Gegg M, et al. Impact of islet architecture on β-cell heterogeneity, plasticity and function[J]. Nat Rev Endocrinol, 2016, 12(12): 695-709.
doi: 10.1038/nrendo.2016.147 pmid: 27585958 |
[13] |
Rui J, Deng S, Arazi A, et al. β cells that resist immunological attack develop during progression of autoimmune diabetes in NOD mice[J]. Cell Metab, 2017, 25(3): 727-738.
doi: 10.1016/j.cmet.2017.01.005 URL |
[14] |
Zheng Z, Zhan Q, Chen A, et al. Islet β-cells physiolo-gical difference study of old and young mice based on single-cell transcriptomics[J]. J Diabetes Investig, 2021, 12(10): 1775-1783.
doi: 10.1111/jdi.13579 URL |
[15] |
Wang YJ, Schug J, Won KJ, et al. Single-cell transcriptomics of the human endocrine pancreas[J]. Diabetes, 2016, 65(10): 3028-3038.
doi: 10.2337/db16-0405 pmid: 27364731 |
[16] |
Qiu WL, Zhang YW, Feng Y, et al. Deciphering pancreatic islet beta cell and alpha cell maturation pathways and characteristic features at the single-cell level[J]. Cell Metab, 2017, 25(5): 1194-1205.
doi: 10.1016/j.cmet.2017.04.003 URL |
[17] |
Zeng C, Mulas F, Sui Y, et al. Pseudotemporal ordering of single cells reveals metabolic control of postnatal β cell proliferation[J]. Cell Metab, 2017, 25(5): 1160-1175.
doi: 10.1016/j.cmet.2017.04.014 URL |
[18] |
Xin Y, Dominguez Gutierrez G, Okamoto H, et al. Pseudotime ordering of single human β-cells reveals states of insulin production and unfolded protein response[J]. Diabetes, 2018, 67(9): 1783-1794.
doi: 10.2337/db18-0365 URL |
[19] |
Enge M, Arda HE, Mignardi M, et al. Single-cell analysis of human pancreas reveals transcriptional signatures of aging and somatic mutation patterns[J]. Cell, 2017, 171(2): 321-330.
doi: 10.1016/j.cell.2017.09.004 URL |
[20] |
Szabat M, Luciani DS, Piret JM, et al. Maturation of adult beta-cells revealed using a Pdx1/insulin dual-reporter lentivirus[J]. Endocrinology, 2009, 150(4): 1627-1635.
doi: 10.1210/en.2008-1224 pmid: 19095744 |
[21] |
Bader E, Migliorini A, Gegg M, et al. Identification of proliferative and mature β-cells in the islets of Langerhans[J]. Nature, 2016, 535(7612): 430-434.
doi: 10.1038/nature18624 URL |
[22] |
Arda HE, Li L, Tsai J, et al. Age-dependent pancreatic gene regulation reveals mechanisms governing human β cell function[J]. Cell Metab, 2016, 23(5): 909-920.
doi: 10.1016/j.cmet.2016.04.002 URL |
[23] |
Lawlor N, George J, Bolisetty M, et al. Single-cell transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2 diabetes[J]. Genome Res, 2017, 27(2): 208-222.
doi: 10.1101/gr.212720.116 URL |
[24] |
Marroqui L, Masini M, Merino B, et al. Pancreatic α cells are resistant to metabolic stress-induced apoptosis in type 2 diabetes[J]. EBioMedicine, 2015, 2(5): 378-385.
doi: 10.1016/j.ebiom.2015.03.012 pmid: 26137583 |
[25] |
Akerman I, Tu Z, Beucher A, et al. Human pancreatic β cell lncRNAs control cell-specific regulatory networks[J]. Cell Metab, 2017, 25(2): 400-411.
doi: S1550-4131(16)30595-2 pmid: 28041957 |
[26] |
Collombat P, Xu X, Ravassard P, et al. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells[J]. Cell, 2009, 138(3): 449-462.
doi: 10.1016/j.cell.2009.05.035 pmid: 19665969 |
[27] |
van der Meulen T, Mawla AM, DiGruccio MR, et al. Virgin beta cells persist throughout life at a neogenic niche within pancreatic islets[J]. Cell Metab, 2017, 25(4): 911-926.
doi: 10.1016/j.cmet.2017.03.017 URL |
[28] |
Furuyama K, Chera S, van Gurp L, et al. Diabetes relief in mice by glucose-sensing insulin-secreting human α-cells[J]. Nature, 2019, 567(7746): 43-48.
doi: 10.1038/s41586-019-0942-8 URL |
[29] |
Bramswig NC, Everett LJ, Schug J, et al. Epigenomic plasticity enables human pancreatic α to β cell reprogramming[J]. J Clin Invest, 2013, 123(3): 1275-1284.
doi: 10.1172/JCI66514 pmid: 23434589 |
[30] |
Chakravarthy H, Gu X, Enge M, et al. Converting adult pancreatic islet α cells into β cells by targeting both dnmt1 and arx[J]. Cell Metab, 2017, 25(3): 622-634.
doi: S1550-4131(17)30044-X pmid: 28215845 |
[31] |
Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing[J]. Nat Rev Mol Cell Biol, 2011, 12(1): 21-35.
doi: 10.1038/nrm3025 URL |
[32] |
Li WV, Li JJ. An accurate and robust imputation method scImpute for single-cell RNA-seq data[J]. Nat Commun, 2018, 9(1): 997.
doi: 10.1038/s41467-018-03405-7 URL |
[33] |
Huang M, Wang J, Torre E, et al. SAVER: gene expression recovery for single-cell RNA sequencing[J]. Nat Methods, 2018, 15(7): 539-542.
doi: 10.1038/s41592-018-0033-z pmid: 29941873 |
[1] | 陆林, 代杨, 王晓群, 吴立群, 张瑞岩, 沈卫峰. 心血管转化研究的若干进展[J]. 内科理论与实践, 2022, 17(05): 369-372. |
[2] | 孙洪平, 陈国芳, 刘超. 植物性饮食与2型糖尿病的研究进展[J]. 内科理论与实践, 2022, 17(04): 349-352. |
[3] | 许晴, 邵慧英, 陈帅, 全进伟, 周清芬, 王敏慧. 延续健康教育和指导对干预2型糖尿病患者冠状动脉斑块进展的影响[J]. 内科理论与实践, 2022, 17(04): 330-333. |
[4] | 高晶晶, 高艳虹. 早发2型糖尿病流行病学、临床特征及病因机制的研究进展[J]. 内科理论与实践, 2022, 17(04): 344-348. |
[5] | 毕宇芳. 2型糖尿病的全生命周期危险因素研究现状[J]. 内科理论与实践, 2021, 16(06): 373-375. |
[6] | 孙艳, 代丹娇, 陈智伟, 张华清. 卡格列净对早期糖尿病肾病尿白蛋白/肌酐比值和尿足细胞相关蛋白裂隙素的影响[J]. 内科理论与实践, 2021, 16(06): 387-391. |
[7] | 高铭, 李娜, 刘煜. 脑-肠轴与2型糖尿病相关性的研究进展[J]. 内科理论与实践, 2021, 16(06): 418-421. |
[8] | 韦晓, 孙烁烁, 陈国芳, 刘超. 表观遗传修饰:糖尿病防治新靶点[J]. 内科理论与实践, 2021, 16(06): 422-426. |
[9] | 居健惠, 袁少卫, 胡翔, 向芳. 社区糖尿病高危人群采用糖化血红蛋白法筛查糖尿病的效用评价[J]. 内科理论与实践, 2021, 16(02): 129-130. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||