内科理论与实践 ›› 2024, Vol. 19 ›› Issue (06): 427-430.doi: 10.16138/j.1673-6087.2024.06.14
收稿日期:
2024-03-08
出版日期:
2024-12-26
发布日期:
2025-03-11
通讯作者:
阎骅 E-mail:
SU Qiying, WANG Hongxiao, YAN Hua()
Received:
2024-03-08
Online:
2024-12-26
Published:
2025-03-11
摘要:
随着实体瘤患者生存期的延长,实体瘤患者经化疗和(或)放疗等细胞毒治疗后髓系肿瘤的发生率逐渐增加且疗效欠佳,预后较原发性髓系肿瘤更差。有研究表明,实体瘤细胞毒治疗可能增加髓系肿瘤的发生风险,其发病机制涉及基因突变、染色体变异、潜能未定克隆性造血等多个方面。针对这一问题,研究人员提出个体化治疗策略,即根据肿瘤的分子生物学特征和患者整体情况选择合适的治疗方法。本文总结了实体瘤细胞毒治疗后罹患髓系肿瘤的发病情况、预后、发病机制、现有治疗手段,深入了解实体瘤细胞毒治疗后髓系肿瘤的研究进展,对于指导临床实践、改善患者预后具有重要意义。
中图分类号:
苏琪莹, 王虹晓, 阎骅. 实体瘤细胞毒治疗后罹患髓系肿瘤的研究进展[J]. 内科理论与实践, 2024, 19(06): 427-430.
SU Qiying, WANG Hongxiao, YAN Hua. An overview of myeloid neoplasms post cytotoxic therapy of solid tumors[J]. Journal of Internal Medicine Concepts & Practice, 2024, 19(06): 427-430.
[1] | Khanna L, Prasad SR, Yedururi S, et al. Second malignancies after radiation therapy: update on pathogenesis and cross-sectional imaging findings[J]. RadioGraphics, 2021, 41(3):876-894. |
[2] |
Priante AV, Castilho EC, Kowalski LP. Second primary tumors in patients with head and neck cancer[J]. Curr Oncol Rep, 2011, 13(2):132-137.
doi: 10.1007/s11912-010-0147-7 pmid: 21234721 |
[3] |
Tanjak P, Suktitipat B, Vorasan N, et al. Risks and cancer associations of metachronous and synchronous multiple primary cancers: a 25-year retrospective study[J]. BMC Cancer, 2021, 21(1):1045.
doi: 10.1186/s12885-021-08766-9 pmid: 34556087 |
[4] | 何敏, 蔡依玲, 王坚. 多原发恶性肿瘤的研究进展[J]. 癌症进展, 2023, 21(10):1054-1056. |
[5] |
Miranda-Filho A, Piñeros M, Ferlay J, et al. Epidemiological patterns of leukaemia in 184 countries: a population-based study[J]. Lancet Haematol, 2018, 5(1):e14-e24.
doi: 10.1016/S2352-3026(17)30232-6 pmid: 29304322 |
[6] | 黄晓军. 骨髓增生异常综合征伴原始细胞增多(MDS-EB)诊疗指南(2022年版)[J]. 全科医学临床与教育, 2022, 20(6):483-485. |
[7] | 金洁, 周一乐. WHO 2022第5版急性髓系白血病分类解读[J]. 临床血液学杂志, 2023, 36(3):145-147. |
[8] |
Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia[J]. Blood, 2016, 127(20):2391-2405.
doi: 10.1182/blood-2016-03-643544 pmid: 27069254 |
[9] | Caruso G, Gigli F, Parma G, et al. Myeloid neoplasms post PARP inhibitors for ovarian cancer[J]. Int J Gynecol Cancer, 2023, 33(4):598-606. |
[10] | Khoury JD, Solary E, Abla O, et al. The 5th edition of the World Health Organization Classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms[J]. Leukemia, 2022, 36(7):1703-1719. |
[11] | 胡彬, 孙士芳. 肺癌合并多原发癌的研究进展[J]. 生命的化学, 2022, 42(9):1738-1745. |
[12] | 周珣. 175例多原发癌的临床回顾性研究[D/OL]. 新疆: 新疆医科大学, 2023. |
[13] | 张旭昌, 范磊, 陆化, 等. 血液肿瘤患者中多种恶性肿瘤发生风险及生存分析:2009年至2017年单中心回顾性研究[J]. 中国实验血液学杂志, 2023, 31(2):389-395. |
[14] |
McNerney ME, Godley LA, Le Beau MM. Therapy-related myeloid neoplasms: when genetics and environment collide[J]. Nat Rev Cancer, 2017, 17(9):513-527.
doi: 10.1038/nrc.2017.60 pmid: 28835720 |
[15] | 刘畅, 陈昊, 王春霖, 等. 51例实体瘤迭合造血系统肿瘤患者的临床特点[J]. 中国医科大学学报, 2023, 52(12):1140-1143. |
[16] | 焦扬, 姜艳红, 刘冰, 等. 血液肿瘤和实体瘤治疗相关急性髓系白血病的临床特点分析[J]. 中华肿瘤杂志, 2024, 46(1):86-95. |
[17] |
Morton LM, Dores GM, Schonfeld SJ, et al. Association of chemotherapy for solid tumors with development of therapy-related myelodysplastic syndrome or acute myeloid leukemia in the modern era[J]. JAMA Oncol, 2019, 5(3):318-325.
doi: 10.1001/jamaoncol.2018.5625 pmid: 30570657 |
[18] |
Oh J, Kim YR, Kim Y, et al. Hereditary cancer syndrome-associated pathogenic variants are common in patients with hematologic malignancies subsequent to primary solid cancer[J]. J Cancer, 2021, 12(14):4288-4294.
doi: 10.7150/jca.54169 pmid: 34093829 |
[19] | Nilsson C, Linde F, Hulegårdh E, et al. Characterization of therapy-related acute myeloid leukemia: increasing incidence and prognostic implications[J]. Haematologica, 2023, 108(4):1015-1025. |
[20] | Swan D, Gurney M, Krawczyk J, et al. Beyond DNA damage: exploring the immunomodulatory effects of cyclophosphamide in multiple myeloma[J]. Hemasphere, 2020, 4(2):e350. |
[21] |
Goldstein M, Kastan MB. The DNA damage response: implications for tumor responses to radiation and chemotherapy[J]. Annu Rev Med, 2015, 66:129-143.
doi: 10.1146/annurev-med-081313-121208 pmid: 25423595 |
[22] |
Bolton KL, Ptashkin RN, Gao T, et al. Cancer therapy shapes the fitness landscape of clonal hematopoiesis[J]. Nat Genet, 2020, 52(11):1219-1226.
doi: 10.1038/s41588-020-00710-0 pmid: 33106634 |
[23] | Adamska M, Kowal-Wiśniewska E, Przybyłowicz-Chalecka A, et al. Clinical outcomes of therapy-related acute myeloid leukemia: an over 20-year single-center retrospective analysis[J]. Pol Arch Intern Med, 2023, 133(1):16344. |
[24] | Calvete O, Mestre J, Jerez A, et al. The secondary myelodysplastic neoplasms (MDS) jigsaw[J]. Cancers (Basel), 2023, 15(5):1483. |
[25] | Voso MT, Falconi G, Fabiani E. What’s new in the pathogenesis and treatment of therapy-related myeloid neoplasms[J]. Blood, 2021, 138(9):749-757. |
[26] |
Burocziova M, Danek P, Oravetzova A, et al. Ppm1d truncating mutations promote the development of genotoxic stress-induced AML[J]. Leukemia, 2023, 37(11):2209-2220.
doi: 10.1038/s41375-023-02030-8 pmid: 37709843 |
[27] |
Sperling AS, Guerra VA, Kennedy JA, et al. Lenalidomide promotes the development of TP53-mutated therapy-related myeloid neoplasms[J]. Blood, 2022, 140(16):1753-1763.
doi: 10.1182/blood.2021014956 pmid: 35512188 |
[28] | Bernard E, Nannya Y, Hasserjian RP, et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes[J]. Nat Med, 2020, 26(10):1549-1556. |
[29] |
Cabezas M, García-quevedo L, Alonso C, et al. Polymorphisms in MDM2 and TP53 genes and risk of developing therapy-related myeloid neoplasms[J]. Scientific Reports, 2019, 9(1):150.
doi: 10.1038/s41598-018-36931-x pmid: 30655613 |
[30] |
Weinberg OK, Siddon A, Madanat YF, et al. TP53 mutation defines a unique subgroup within complex karyotype de novo and therapy-related MDS/AML[J]. Blood Adv, 2022, 6(9):2847-2853.
doi: 10.1182/bloodadvances.2021006239 pmid: 35073573 |
[31] | Kuendgen A, Nomdedeu M, Tuechler H, et al. Therapy-related myelodysplastic syndromes deserve specific diagnostic sub-classification and risk-stratification-an approach to classification of patients with t-MDS[J]. Leukemia, 2021, 35(3):835-849. |
[32] |
Rogers HJ, Wang X, Xie Y, et al. Comparison of therapy-related and de novo core binding factor acute myeloid leukemia: A bone marrow pathology group study[J]. Am J Hematol, 2020, 95(7):799-808.
doi: 10.1002/ajh.25814 pmid: 32249963 |
[33] |
Warren JT, Link DC. Clonal hematopoiesis and risk for hematologic malignancy[J]. Blood, 2020, 136(14):1599-1605.
doi: 10.1182/blood.2019000991 pmid: 32736382 |
[34] |
Gillis NK, Ball M, Zhang Q, et al. Clonal haemopoiesis and therapy-related myeloid malignancies in elderly patients: a proof-of-concept, case-control study[J]. Lancet Oncol, 2017, 18(1):112-121.
doi: S1470-2045(16)30627-1 pmid: 27927582 |
[35] | Kida M, Usuki K, Uchida N, et al. Outcome and risk factors for therapy-related myeloid neoplasms treated with allogeneic stem cell transplantation in Japan[J]. Biol Blood Marrow Transplant, 2020, 26(8):1543-1551. |
[36] |
Cantu MD. Updates in molecular genetics of therapy-related myeloid neoplasms[J]. Semin Diagn Pathol, 2023, 40(3):182-186.
doi: 10.1053/j.semdp.2023.04.001 pmid: 37032284 |
[37] |
Liu J, Tong J, Yang H. Targeting CD33 for acute myeloid leukemia therapy[J]. BMC Cancer, 2022, 22(1):24.
doi: 10.1186/s12885-021-09116-5 pmid: 34980040 |
[38] |
Fathi AT, Erba HP, Lancet JE, et al. A phase 1 trial of vadastuximab talirine combined with hypomethylating agents in patients with CD33-positive AML[J]. Blood, 2018, 132(11):1125-1133.
doi: 10.1182/blood-2018-03-841171 pmid: 30045838 |
[39] | 金洁, 周一乐. 成人急性髓细胞白血病的诊断与治疗进展[J]. 临床血液学杂志, 2022, 35(5):309-311. |
[40] | DiNardo CD, Jonas BA, Pullarkat V, et al. Azacitidine and Venetoclax in previously untreated acute myeloid leukemia[J]. N Engl J Med, 2020, 383(7):617-629. |
[41] |
Sallman DA. To target the untargetable: elucidation of synergy of APR-246 and azacitidine in TP53 mutant myelodysplastic syndromes and acute myeloid leukemia[J]. Haematologica, 2020, 105(6):1470-1472.
doi: 10.3324/haematol.2020.249060 pmid: 32482751 |
[1] | 陈微微, 孙良丹. 中国人群银屑病遗传流行病学研究进展[J]. 诊断学理论与实践, 2024, 23(06): 561-567. |
[2] | 范凯健, 刘金渝, 赵福涛. 重视干燥综合征的早期诊断[J]. 内科理论与实践, 2024, 19(06): 417-421. |
[3] | 谢晓萌, 龚艳春. 老年餐后低血压及其心脑血管损害的研究进展[J]. 内科理论与实践, 2024, 19(05): 342-346. |
[4] | 李晨曦, 胡蕴, 吴文君. 胰腺脂肪沉积与动脉粥样硬化的关联研究进展[J]. 内科理论与实践, 2024, 19(04): 278-282. |
[5] | 李雅洁, 崔岱. 亚急性甲状腺炎诊治新进展[J]. 内科理论与实践, 2024, 19(04): 259-263. |
[6] | 孙以亚, 罗庆志, 金奇, 吴立群. 导管消融治疗心房颤动合并射血分数保留型心力衰竭患者的临床进展[J]. 内科理论与实践, 2024, 19(03): 188-192. |
[7] | 王刚, 齐金蕾, 刘馨雅, 任汝静, 林绍慧, 胡以松, 李海霞, 谢心怡, 王金涛, 李建平, 朱怡康, 高梦伊, 杨竣杰, 王怡然, 井玉荣, 耿介立, 支楠, 曹雯炜, 徐群, 余小萍, 朱圆, 周滢, 王琳, 高超, 李彬寅, 陈生弟, 袁芳, 窦荣花, 刘晓云, 李雪娜, 尹雅芙, 常燕, 徐刚, 辛佳蔚, 钟燕婷, 李春波, 王颖, 周脉耕, 陈晓春, 代表中国阿尔茨海默病报告编写组. 中国阿尔茨海默病报告2024[J]. 诊断学理论与实践, 2024, 23(03): 219-256. |
[8] | 黄睿, 饶慧瑛. “消除”背景下的丙型肝炎病毒感染现状及筛查、诊断对策[J]. 诊断学理论与实践, 2024, 23(01): 1-8. |
[9] | 陆忠晓, 汤杰, 黄文海. 以SEER为基础的列线图构建和胰腺癌病人生存预测[J]. 外科理论与实践, 2024, 29(01): 46-53. |
[10] | 揭志军, 沙家凤, 张萌. 新型冠状病毒重复感染和应对[J]. 内科理论与实践, 2024, 19(01): 25-31. |
[11] | 杨思恒, 张学武, 胡国启, 张彦, 李自强, 盛滋科, 徐玉敏. 2019—2022年我院血流感染病原菌分布及耐药性分析[J]. 内科理论与实践, 2023, 18(06): 424-430. |
[12] | 木卡大斯·热合曼, 蒋婕, 童建菁. 咖啡对消化系统恶性肿瘤影响的研究进展[J]. 内科理论与实践, 2023, 18(05): 368-371. |
[13] | 徐丽辰, 李贵森. 局灶节段性肾小球硬化发病机制及治疗进展[J]. 内科理论与实践, 2023, 18(05): 363-367. |
[14] | 张婕, 陆洁莉. 非胰岛细胞肿瘤所致的低血糖临床诊治进展[J]. 内科理论与实践, 2023, 18(04): 256-260. |
[15] | 张婕, 毕宇芳. 神经内分泌肿瘤发病的代谢危险因素[J]. 内科理论与实践, 2023, 18(04): 251-255. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||