内科理论与实践 ›› 2025, Vol. 20 ›› Issue (05): 399-404.doi: 10.16138/j.1673-6087.2025.05.10
张海涵1a(
), 荆玮1a, 单悦童1a, 张玉玲1a, 陈安安1a, 龙思琪1a, 王宇泽1a, 李威1a, 潘卫东1a,1b,2(
)
收稿日期:2025-09-18
出版日期:2025-12-10
发布日期:2025-12-26
通讯作者:
潘卫东
E-mail:haidiwuwanli@163.com;panwd@medmail.com.cn
基金资助:
ZHANG Haihan1a(
), JING Wei1a, SHAN Yuetong1a, ZHANG Yuling1a, CHEN Anan1a, LONG Siqi1a, WANG Yuze1a, LI Wei1a, PAN Weidong1a,1b,2(
)
Received:2025-09-18
Online:2025-12-10
Published:2025-12-26
Contact:
PAN Weidong
E-mail:haidiwuwanli@163.com;panwd@medmail.com.cn
摘要:
帕金森病(Parkinson disease,PD)是一种慢性神经退行性疾病,其发生机制主要与神经元变性和α突触核蛋白异常聚集有关。研究表明,PD患者合并2型糖尿病的风险较高。降糖药物通过调节糖代谢、改善胰岛素敏感性等途径调控血糖,部分降糖药物还兼具神经保护或抗氧化作用,近年来其在神经退行性疾病中的作用机制研究日益深入。本文对PD的病理基础和相关发病机制进行综述,探讨降糖药物对PD病程进程的影响和作用。
中图分类号:
张海涵, 荆玮, 单悦童, 张玉玲, 陈安安, 龙思琪, 王宇泽, 李威, 潘卫东. 降糖药对帕金森病的影响和作用机制探讨[J]. 内科理论与实践, 2025, 20(05): 399-404.
ZHANG Haihan, JING Wei, SHAN Yuetong, ZHANG Yuling, CHEN Anan, LONG Siqi, WANG Yuze, LI Wei, PAN Weidong. Discussion on effect and mechanism of hypoglycemic drugs on Parkinson disease[J]. Journal of Internal Medicine Concepts & Practice, 2025, 20(05): 399-404.
表1
部分口服降糖药对PD影响的研究
| 降糖药 | 研究对象 | 剂量/浓度 | 评价参数 | 结论 |
| 双胍类 | T2DM患者 | 不同暴露量和使用强度 | 糖尿病患者3年和5年PD发生率 | 接受低剂量和低强度二甲双胍患者PD发生率低[ |
| 成年雄性大鼠 | 每天口服500 mg/kg | 大鼠脑组织中丙二醛、TNF-α水平等 | 二甲双胍改善糖尿病合并PD大鼠的炎性标志物[ | |
| 12周龄小鼠 | 不同浓度范围 | 线粒体活性、神经元进程的长度 | 二甲双胍降低PD发病风险[ | |
| 中老年退伍军人 | 不同平均日剂量 | 糖尿病患者使用二甲双胍2年后PD发生率 | 使用二甲双胍的患者PD风险更低[ | |
| 荟萃分析,基于19份报告 | / | 基于STATA V.14.2 进行分析 | 二甲双胍单一疗法使PD发生率增加[ | |
| 荟萃分析,纳入 10 项研究 | / | 基于Review Manager分析 | 二甲双胍会显著增加 PD风险[ | |
| SGLT-2抑制剂 | 10周龄雄性大鼠 | 恩格列净每天口服 10 mg/kg和20 mg/kg | 大鼠僵值杆测试、转棒测试、组织学检查 | 恩格列净在 PD大鼠中诱导有益的神经调节作用[ |
| 40岁以上糖尿病患者 | / | PD发病率 | SGLT-2抑制剂与PD发病风险降低相关[ | |
| DPP-4抑制剂、GLP-1激动剂 | 回顾性研究,纳入697例患者 | / | 多巴胺转运体可用性、运动并发症发生率等 | DPP-4抑制剂在PD患者中减少运动并发症风险[ |
| 接受二甲双胍治疗的糖尿病患者 | 患者中位限定日剂量为0.32 | PD发病率 | 糖尿病患者使用 DPP-4抑制剂和二甲双胍降低 PD发生风险[ | |
| 荟萃研究,涉及15项研究 | / | 应用Review Manager 5.3进行分析 | DPP-4抑制剂可能降低糖尿病患者患特发性 PD发生风险[ | |
| 野生8周龄C57BL/6J雄鼠 | 艾塞那肽每天50 μg/kg,利格列汀每天5 mg/kg,小鼠颈后皮下注射 | 大鼠旷场测试、爬杆测试、步态分析等 | 艾塞那肽、利格列汀可逆转PD小鼠运动功能障碍[ | |
| 胰岛素增敏剂 | 回顾性研究,纳入62 400例糖尿病患者 | / | PD年发病率 | 噻唑烷二酮的使用与 PD发生率呈负相关[ |
| 回顾性研究,纳入38 521例糖尿病患者 | 非TZD治疗组和TZD治疗组 | PD发病率 | 噻唑烷二酮治疗组PD风险降低,且与使用剂量相关[ |
| [1] |
Du MR, Gao QY, Liu CL, et al. Exploring the pharmacological potential of metformin for neurodegenerative diseases[J]. Front Aging Neurosci, 2022, 14: 838173.
doi: 10.3389/fnagi.2022.838173 |
| [2] | 张森, 赵晓悦, 梁宇, 等. 帕金森病致病因素及发病机制研究进展[J]. 药学学报, 2020, 55(10): 2264-2272. |
| Zhang S, Zhao XY. Liang Y, et al. Advances in understanding the pathogenic factors and pathogenesis of Parkinson's disease [J]. Acta Pharmaceutica Sinica, 2020, 55(10): 2264-2272. | |
| [3] |
Paillusson S, Gomez-Suaga P, Stoica R, et al. α-Synuclein binds to the ER-mitochondria tethering protein VAPB to disrupt Ca2+ homeostasis and mitochondrial ATP production[J]. Acta Neuropathol, 2017, 134(1): 129-149.
doi: 10.1007/s00401-017-1704-z |
| [4] | 范磊, 邓文娟, 岳秉宏, 等. 合并2型糖尿病的帕金森病患者的临床症状特点及GLP-1类似物联合美多巴的干预效果[J]. 广西医学, 2021, 43(17): 2067-2073. |
| Fan L, Deng WJ, Yue BH, et al. Clinical symptoms characteristics of concomitant type 2 diabetes mellitus and intervention effect of GLP-1 analogues combined with Madopar in patients with Parkinson's disease[J]. Guangxi Medical Journal, 2021, 43(17): 2067-2073. | |
| [5] | 卢明芬, 付强, 胡贞贞. 二甲双胍治疗慢性神经精神疾病的研究进展[J]. 南昌大学学报(医学版), 2022, 62(3): 68-72. |
| Lu MF, Fu Q, Hu ZZ. Research progress of metformin in treatment of chronic neuropsychiatric disease[J]. Journal of Nanchang University (Medical Sciences), 2022, 62(3): 68-72. | |
| [6] | De Pablo-Fernandez E, Goldacre R, Pakpoor J, et al. Association between diabetes and subsequent Parkinson disease: a record-linkage cohort study[J]. Neurology, 2018, 91(2): e139-e142. |
| [7] |
Lv YQ, Yuan L, Sun Y, et al. Long-term hyperglycemia aggravates α-synuclein aggregation and dopaminergic neuronal loss in a Parkinson's disease mouse model[J]. Transl Neurodegener, 2022, 11(1): 14.
doi: 10.1186/s40035-022-00288-z |
| [8] |
Sun Y, Guo C, Yuan L, et al. Cynomolgus monkeys with spontaneous type-2-diabetes-mellitus-like pathology develop alpha-synuclein alterations reminiscent of prodromal Parkinson's disease and related diseases[J]. Front Neurosci, 2020, 14: 63.
doi: 10.3389/fnins.2020.00063 |
| [9] | 罗阳赋. 高糖对α-synuclein等帕金森病相关蛋白的机制性研究 [D]. 2020. 广州: 南方医科大学. |
| Luo YF. Mechanism study of high glucose on PD-related proteins such as α-synuclein [D]. 2020. Guangzhou: Southern Medical University. | |
| [10] |
Morris JK, Bomhoff GL, Stanford JA, et al. Neurodegeneration in an animal model of Parkinson's disease is exacerbated by a high-fat diet[J]. Am J Physiol Regul Integr Comp Physiol, 2010, 299(4): R1082-90.
doi: 10.1152/ajpregu.00449.2010 |
| [11] |
Paudel YN, Angelopoulou E, Piperi C, et al. Emerging neuroprotective effect of metformin in Parkinson's disease: a molecular crosstalk[J]. Pharmacol Res, 2020, 152: 104593.
doi: 10.1016/j.phrs.2019.104593 |
| [12] |
Paglialunga S, Ludzki A, Root-McCaig J, et al. In adipose tissue, increased mitochondrial emission of reactive oxygen species is important for short-term high-fat diet-induced insulin resistance in mice[J]. Diabetologia, 2015, 58(5): 1071-80.
doi: 10.1007/s00125-015-3531-x |
| [13] |
Hong CT, Chen KY, Wang W, et al. Insulin resistance promotes Parkinson's disease through aberrant expression of α-synuclein, mitochondrial dysfunction, and deregulation of the polo-like kinase 2 signaling[J]. Cells, 2020, 9(3): 740.
doi: 10.3390/cells9030740 |
| [14] |
Zhu X, Shen J, Feng S, et al. Akkermansia muciniphila, which is enriched in the gut microbiota by metformin, improves cognitive function in aged mice by reducing the proinflammatory cytokine interleukin-6[J]. Microbiome, 2023, 11(1): 120.
doi: 10.1186/s40168-023-01567-1 |
| [15] |
Newby D, Linden AB, Fernandes M, et al. Comparative effect of metformin versus sulfonylureas with dementia and Parkinson's disease risk in US patients over 50 with type 2 diabetes mellitus[J]. BMJ Open Diabetes Res Care, 2022, 10(5): e003036.
doi: 10.1136/bmjdrc-2022-003036 |
| [16] | Cha JH, Yang WH, Xia W, et al. Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1 [J]. Mol Cell, 2018, 71(4): 606-620. |
| [17] | 李喆, 张振坤, 李亚, 等. 二甲双胍在神经退行性疾病预防和治疗中的研究进展[J]. 郑州大学学报(医学版), 2021, 56(2): 204-210. |
| Li Z, Zhang ZK, Li Y, et al. Research progress on metformin in the prevention and treatment of neurodegenerative diseases[J]. Journal of Zhengzhou University (Medical Sciences), 2021, 56(2): 204-210. | |
| [18] |
Kang H, Khang R, Ham S, et al. Activation of the ATF2/CREB-PGC-1α pathway by metformin leads to dopaminergic neuroprotection[J]. Oncotarget, 2017, 8(30): 48603-48618.
doi: 10.18632/oncotarget.18122 |
| [19] | 李珊, 马莎, 高源, 等. 帕金森病伴2型糖尿病患者血糖水平、运动功能及左旋多巴等效剂量[J]. 中国老年学杂志, 2018, 38(21): 5160-5162. |
| Li S, Ma S, Gao Y, et al. Blood glucose levels, motor function, and levodopa equivalent dose in patients with Parkinson's disease and type 2 diabetes[J]. Chinese Journal of Gerontology, 2018, 38(21): 5160-5162. | |
| [20] | 王姗姗, 杨霄鹏, 王雨童, 等. 二甲双胍调控自噬促PD神经细胞修复的研究[J]. 脑与神经疾病杂志, 2022, 30(1): 41-44. |
| Wang SS, Yang XP, Wang YT, et al. Metformin regulates autophagy to promote repair of nerve cell in Parkinson’s disease[J]. Journal of Brain and Nervous Diseases, 2022, 30(1): 41-44. | |
| [21] |
Ping F, Jiang N, Li Y. Association between metformin and neurodegenerative diseases of observational studies: systematic review and meta-analysis[J]. BMJ Open Diabetes Res Care, 2020, 8(1): e001370.
doi: 10.1136/bmjdrc-2020-001370 |
| [22] | 路粉蕾, 王惠娟, 王梁, 等. PD与维生素B12、叶酸、Hcy水平研究进展[J]. 脑与神经疾病杂志, 2022, 30(9): 585-588. |
| Lu FL, Wang HJ, Wang L, et al. Research progress on vitamin B12, folate, and homocysteine levels in Parkinson's disease[J]. Journal of Brain and Nervous Diseases, 2022, 30(9): 585-588. | |
| [23] |
Sim AY, Barua S, Kim JY, et al. Role of DPP-4 and SGLT2 inhibitors connected to Alzheimer disease in type 2 diabetes mellitus[J]. Front Neurosci, 2021, 15: 708547.
doi: 10.3389/fnins.2021.708547 |
| [24] | 汪洋, 王可, 刘宝兰. 达格列净对高糖诱导人视网膜血管内皮细胞凋亡及氧化应激的影响[J]. 国际眼科杂志, 2022, 22(3): 378-382. |
| Wang Y, Wang K, Liu BL. Effect of Dapagliflozin on high glucose-induced apoptosis and oxidative stress in human retinal vascular endothelial cells[J]. Int Eye Sci, 2022, 22(3): 378-382. | |
| [25] |
Hayden MR, Grant DG, Aroor AR, et al. Empagliflozin ameliorates type 2 diabetes-induced ultrastructural remodeling of the neurovascular unit and neuroglia in the female db/ db mouse[J]. Brain Sci, 2019, 9(3): 57.
doi: 10.3390/brainsci9030057 |
| [26] |
Mousa SA, Ayoub BM. Repositioning of dipeptidyl peptidase-4 inhibitors and glucagon like peptide-1 agonists as potential neuroprotective agent[J]. Neural Regen Res, 2019, 14(5): 745-748.
doi: 10.4103/1673-5374.249217 |
| [27] |
Pipatpiboon N, Pintana H, Pratchayasakul W, et al. DPP4-inhibitor improves neuronal insulin receptor function, brain mitochondrial function and cognitive function in rats with insulin resistance induced by high-fat diet consumption[J]. Eur J Neurosci, 2013, 37(5): 839-49.
doi: 10.1111/ejn.12088 |
| [28] | 李革. 2, 4-噻唑烷二酮对MPP+损伤SH-SY5Y细胞的保护作用 [D]. 2016. 石家庄: 河北师范大学. |
| Li G. Protective effects of 2, 4-Thiazolidinedione on the SH-SY5Y cell damaged by MPP+ [D]. 2016. Shijiazhuang: Hebei Normal University. | |
| [29] | Wang Y, Zhao W, Li G, et al. Neuroprotective effect and mechanism of thiazolidinedione on dopaminergic neurons in vivo and in vitro in Parkinson's disease[J]. PPAR Res, 2017, 2017: 4089214. |
| [30] |
Zhu Y, Pu J, Chen Y, et al. Decreased risk of Parkinson's disease in diabetic patients with thiazolidinediones therapy: an exploratory meta-analysis[J]. PLoS One, 2019, 14(10): e0224236.
doi: 10.1371/journal.pone.0224236 |
| [31] |
Sunnarborg K, Tiihonen M, Huovinen M, et al. Association between different diabetes medication classes and risk of Parkinson's disease in people with diabetes[J]. Pharmacoepidemiol Drug Saf, 2022, 31(8): 875-882.
doi: 10.1002/pds.5448 |
| [32] |
Huang KH, Chang YL, Gau SY, et al. Dose-response association of metformin with Parkinson's disease odds in type 2 diabetes mellitus[J]. Pharmaceutics, 2022, 14(5): 946.
doi: 10.3390/pharmaceutics14050946 |
| [33] | Norradee C, Khwanraj K, Balit T, et al. Evaluation of the combination of metformin and rapamycin in an MPP+-Treated SH-SY5Y model of Parkinson's disease[J]. Adv Pharmacol Pharm Sci, 2023, 2023: 3830861. |
| [34] |
Ay M, Charli A, Langley M, et al. Mito-metformin protects against mitochondrial dysfunction and dopaminergic neuronal degeneration by activating upstream PKD1 signaling in cell culture and MitoPark animal models of Parkinson's disease[J]. Front Neurosci, 2024, 18: 1356703.
doi: 10.3389/fnins.2024.1356703 |
| [35] |
Shi Q, Liu S, Fonseca VA, et al. Effect of metformin on neurodegenerative disease among elderly adult US veterans with type 2 diabetes mellitus[J]. BMJ Open, 2019, 9(7): e024954.
doi: 10.1136/bmjopen-2018-024954 |
| [36] |
Qin X, Zhang X, Li P, et al. Association between diabetes medications and the risk of Parkinson's disease: a systematic review and meta-analysis[J]. Front Neurol, 2021, 12: 678649.
doi: 10.3389/fneur.2021.678649 |
| [37] |
Motawi TK, Al-Kady RH, Abdelraouf SM, et al. Empagliflozin alleviates endoplasmic reticulum stress and augments autophagy in rotenone-induced Parkinson's disease in rats: targeting the GRP78/PERK/eIF2α/CHOP pathway and miR-211-5p[J]. Chem Biol Interact, 2022, 362: 110002.
doi: 10.1016/j.cbi.2022.110002 |
| [38] |
Kim HK, Biessels GJ, Yu MH, et al. SGLT2 inhibitor use and risk of dementia and Parkinson disease among patients with type 2 diabetes[J]. Neurology, 2024, 103(8): e209805.
doi: 10.1212/WNL.0000000000209805 |
| [39] |
Jeong SH, Chung SJ, Yoo HS, et al. Beneficial effects of dipeptidyl peptidase-4 inhibitors in diabetic Parkinson's disease[J]. Brain, 2021, 144(4): 1127-1137.
doi: 10.1093/brain/awab015 |
| [40] |
Lin YH, Hsu CC, Liu JS, et al. Use of dipeptidyl peptidase-4 inhibitors was associated with a lower risk of Parkinson's disease in diabetic patients[J]. Sci Rep, 2023, 13(1): 22489.
doi: 10.1038/s41598-023-49870-z |
| [41] |
Xie Y, Wang J, Jiang J, et al. Do oral antidiabetic medications alter the risk of Parkinson's disease? An updated systematic review and meta-analysis[J]. Neurol Sci, 2023, 44(12): 4193-4203.
doi: 10.1007/s10072-023-06965-9 |
| [42] | Yu HY, Sun T, Wang Z, et al. Exendin-4 and linagliptin attenuate neuroinflammation in a mouse model of Parkinson's disease[J]. Neural Regen Res, 2023, 18(8): 1818-1826. |
| [43] |
Zhao H, Zhuo L, Sun Y, et al. Thiazolidinedione use and risk of Parkinson's disease in patients with type 2 diabetes mellitus[J]. NPJ Parkinsons Dis, 2022, 8(1): 138.
doi: 10.1038/s41531-022-00406-8 |
| [44] |
Lin HL, Lin HC, Tseng YF, et al. Association of thiazolidinedione with a lower risk of Parkinson's disease in a population with newly-diagnosed diabetes mellitus[J]. Ann Med, 2018, 50(5): 430-436.
doi: 10.1080/07853890.2018.1488083 |
| [45] |
Braak H, de Vos RA, Bohl J, et al. Gastric alpha-synuclein immunoreactive inclusions in Meissner's and Auerbach's plexuses in cases staged for Parkinson's disease-related brain pathology[J]. Neurosci Lett, 2006, 396(1): 67-72.
doi: 10.1016/j.neulet.2005.11.012 |
| [46] |
Helwig M, Ulusoy A, Rollar A, et al. Neuronal hyperactivity-induced oxidant stress promotes in vivo α-synuclein brain spreading[J]. Sci Adv, 2022, 8(35): eabn0356.
doi: 10.1126/sciadv.abn0356 |
| [47] |
Wallen ZD, Demirkan A, Twa G, et al. Metagenomics of Parkinson's disease implicates the gut microbiome in multiple disease mechanisms[J]. Nat Commun, 2022, 13(1): 6958.
doi: 10.1038/s41467-022-34667-x |
| [48] |
Dogra N, Mani RJ, Katare DP. The gut-brain axis: two ways signaling in Parkinson's disease[J]. Cell Mol Neurobiol, 2022, 42(2): 315-332.
doi: 10.1007/s10571-021-01066-7 |
| [49] |
Sikalidis AK, Maykish A. The gut microbiome and type 2 diabetes mellitus: discussing a complex relationship[J]. Biomedicines, 2020, 8(1): 8.
doi: 10.3390/biomedicines8010008 |
| [50] |
Cao J, Chen M, Xu R, et al. Therapeutic mechanisms of berberine to improve the intestinal barrier function via modulating gut microbiota, TLR4/NF-κ B/MTORC pathway and autophagy in cats[J]. Front Microbiol, 2022, 13: 961885.
doi: 10.3389/fmicb.2022.961885 |
| [51] | 鲁扬, 宣丽萍, 姜宏伟, 等. 一例可能与服用中药膏方有关的胰岛素自身免疫综合征[J]. 中华内分泌代谢杂志, 2017, 33(12): 1047-1049. |
| Lu Y, Xuan LP, Jiang HW, et al. A case of insulin autoimmune syndrome which might be induced by Chinese herbal extracts[J]. Chin J Endocrinol Metab, 2017, 33(12): 1047-1049. | |
| [52] |
Triggle CR, Mohammed I, Bshesh K, et al. Metformin: is it a drug for all reasons and diseases?[J]. Metabolism, 2022, 133: 155223.
doi: 10.1016/j.metabol.2022.155223 |
| [1] | 代月铃, 马瑜瑾.
生物活性玻璃对糖尿病皮肤创面修复的研究进展
[J]. 组织工程与重建外科杂志, 2025, 21(5): 502-. |
| [2] | 茆致远 王琛.
四氧化三锰纳米酶促进糖尿病创面愈合的机制研究
[J]. 组织工程与重建外科杂志, 2025, 21(4): 353-. |
| [3] | 刘远航, 常保国, 牟勇, 等. 股前外侧游离皮瓣修复重度糖尿病足溃疡创面的应用观察 #br# [J]. 组织工程与重建外科杂志, 2025, 21(4): 337-. |
| [4] | 郭根宇, 张楚乔, 许尹梅, 等. 通过整合生物信息学分析与机器学习揭示糖尿病足溃疡缺氧相关生物标志物[J]. 组织工程与重建外科杂志, 2025, 21(3): 238-. |
| [5] | 吴茜茜, 郭洁, 王依凡, 刘丽, 王锋. 钠-葡萄糖耦联转运体2抑制剂降低早期糖尿病肾病患者的尿酸水平[J]. 内科理论与实践, 2025, 20(05): 371-375. |
| [6] | 刘书萌, 艾鹏辉, 肖勤, 杨晓东. 胆汁酸与肠道微生物相互作用及其在帕金森病中的作用[J]. 内科理论与实践, 2025, 20(04): 345-350. |
| [7] | 史曼曼, 马毓华, 郑金鑫, 柯燕容, 王语欣, 刘剑, 王伟铭. 1990年至2021年全球及中国2型糖尿病导致的慢性肾脏病疾病负担及危险因素分析[J]. 诊断学理论与实践, 2025, 24(03): 268-278. |
| [8] | 郭娟, 杨志芳, 吉日. 超声在糖尿病肾病诊断中的应用进展[J]. 诊断学理论与实践, 2025, 24(03): 342-348. |
| [9] | 陈蕊华, 丁晓颖, 刘芳, 王庆国, 王育璠. 1例线粒体DNA A3243G点突变病例家系临床表型和基因型分析[J]. 内科理论与实践, 2025, 20(03): 204-209. |
| [10] | 张计委, 吴小琼, 崔金煌, 俞春明, 黎衍云. 中老年人群糖代谢状态与全因死亡及心脑血管疾病死亡风险的关联研究[J]. 内科理论与实践, 2025, 20(02): 120-125. |
| [11] | 孙倩, 林诗雨, 夏梦婕, 周海燕, 王秀薇. 帕金森病疼痛的中西医治疗研究进展[J]. 内科理论与实践, 2025, 20(01): 50-53. |
| [12] | 严佳怡, 马骏, 钟逸斐, 张先闻. 中医药改善糖尿病肾脏疾病间质纤维化的作用机制研究现状[J]. 内科理论与实践, 2025, 20(01): 38-45. |
| [13] | 张凤娟, 杨钊. 中西医治疗帕金森病体位性低血压的研究进展[J]. 内科理论与实践, 2025, 20(01): 34-37. |
| [14] | 张杰, 徐顺, 刘琰, 施燕. 基于网络药理学及转录组学揭示虎黄洗剂促进糖尿病创面愈合机制[J]. 内科理论与实践, 2025, 20(01): 18-23. |
| [15] | 宁光. 中国糖尿病的防控现状与挑战[J]. 诊断学理论与实践, 2025, 24(01): 1-6. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||