 
  
	内科理论与实践 ›› 2025, Vol. 20 ›› Issue (04): 345-350.doi: 10.16138/j.1673-6087.2025.04.16
收稿日期:2024-07-23
									
				
									
				
									
				
											出版日期:2025-07-31
									
				
											发布日期:2025-10-27
									
			通讯作者:
					杨晓东 E-mail: 基金资助:
        
               		LIU Shumenga, AI Penghuib, XIAO Qinb, YANG Xiaodongb( )
)
			  
			
			
			
                
        
    
Received:2024-07-23
									
				
									
				
									
				
											Online:2025-07-31
									
				
											Published:2025-10-27
									
			摘要:
胆汁酸是胆固醇代谢的重要产物之一,不仅具有乳化脂质的作用,而且可作为信号分子,对糖、脂质、能量代谢稳态和机体免疫功能发挥重要的调节作用。胆汁酸一方面受到宿主和肠道微生物的影响,另一方面又能重塑肠道环境稳态,并通过微生物-肠-脑轴(microbiome-gut-brain axis, MGBA)对中枢神经系统进行调控。因此,胆汁酸信号通路的稳态对神经系统生理功能的维持具有重要意义。本文将从胆汁酸与肠道微生物相互作用的角度出发,综述胆汁酸代谢异常与帕金森病(Parkinson disease, PD)的关系,及其在PD治疗中的潜在作用。
中图分类号:
刘书萌, 艾鹏辉, 肖勤, 杨晓东. 胆汁酸与肠道微生物相互作用及其在帕金森病中的作用[J]. 内科理论与实践, 2025, 20(04): 345-350.
LIU Shumeng, AI Penghui, XIAO Qin, YANG Xiaodong. Interaction between bile acids and gut microbiota and their role in Parkinson disease[J]. Journal of Internal Medicine Concepts & Practice, 2025, 20(04): 345-350.
| [1] | Li G, Ma J, Cui S, et al. Parkinson’s disease in China: a forty-year growing track of bedside work[J]. Transl Neurodegener, 2019, 8:22. | 
| [2] | Morris HR, Spillantini MG, Sue CM, et al. The pathogenesis of Parkinson’s disease[J]. Lancet, 2024, 403(10423):293-304. doi: 10.1016/S0140-6736(23)01478-2 pmid: 38245249 | 
| [3] | Chiang JYL, Ferrell JM. Bile acids as metabolic regulators and nutrient sensors[J]. Annu Rev Nutr, 2019, 39:175-200. doi: 10.1146/annurev-nutr-082018-124344 pmid: 31018107 | 
| [4] | Cai J, Rimal B, Jiang C, et al. Bile acid metabolism and signaling, the microbiota, and metabolic disease[J]. Pharmacol Ther, 2022, 237:108238. | 
| [5] | Hurley MJ, Bates R, Macnaughtan J, et al. Bile acids and neurological disease[J]. Pharmacol Ther, 2022, 240:108311. | 
| [6] | Ridlon JM, Harris SC, Bhowmik S, et al. Consequences of bile salt biotransformations by intestinal bacteria[J]. Gut Microbes, 2016, 7(1):22-39. doi: 10.1080/19490976.2015.1127483 pmid: 26939849 | 
| [7] | Guzior DV, Quinn RA. Review: Microbial transformations of human bile acids[J]. Microbiome, 2021, 9(1):140. doi: 10.1186/s40168-021-01101-1 pmid: 34127070 | 
| [8] | Plass JR, Mol O, Heegsma J, et al. Farnesoid X receptor and bile salts are involved in transcriptional regulation of the gene encoding the human bile salt export pump[J]. Hepatology, 2002, 35(3):589-596. doi: 10.1053/jhep.2002.31724 pmid: 11870371 | 
| [9] | Song KH, Li T, Owsley E, et al. Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7alpha-hydroxylase gene expression[J]. Hepatology, 2009, 49(1):297-305. | 
| [10] | Neimark E, Chen F, Li X, et al. Bile acid-induced negative feedback regulation of the human ileal bile acid transporter[J]. Hepatology, 2004, 40(1):149-156. doi: 10.1002/hep.20295 pmid: 15239098 | 
| [11] | Sorrentino G, Perino A, Yildiz E, et al. Bile acids signal via TGR5 to activate intestinal stem cells and epithelial regeneration[J]. Gastroenterology, 2020, 159(3):956-968. doi: S0016-5085(20)34739-9 pmid: 32485177 | 
| [12] | Liu L, Dong W, Wang S, et al. Deoxycholic acid disrupts the intestinal mucosal barrier and promotes intestinal tumorigenesis[J]. Food Funct, 2018, 9(11):5588-5597. doi: 10.1039/c8fo01143e pmid: 30339173 | 
| [13] | Wahlström A, Sayin SI, Marschall HU, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism[J]. Cell Metab, 2016, 24(1):41-50. doi: 10.1016/j.cmet.2016.05.005 pmid: 27320064 | 
| [14] | Monteiro-Cardoso VF, Corliano M, Singaraja RR. Bile acids: a communication channel in the gut-brain axis[J]. Neuromolecular Med, 2021, 23(1):99-117. | 
| [15] | Inagaki T, Moschetta A, Lee YK, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor[J]. Proc Natl Acad Sci U S A, 2006, 103(10):3920-3925. | 
| [16] | Heintz-Buschart A, Pandey U, Wicke T, et al. The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder[J]. Mov Disord, 2018, 33(1):88-98. | 
| [17] | Li Z, Liang H, Hu Y, et al. Gut bacterial profiles in Parkinson’s disease: a systematic review[J]. CNS Neurosci Ther, 2023, 29(1):140-157. | 
| [18] | 陈施吾, 王刚. 帕金森病与肠道菌群关系的研究进展[J]. 内科理论与实践, 2018, 13(5):316-319. | 
| Chen SW, Wang G. Advances in research on relationship between Parkinson’s disease and gut microbiota[J]. J Intern Med Concepts Pract, 2018, 13(5):316-319. | |
| [19] | Li P, Killinger BA, Ensink E, et al. Gut microbiota dysbiosis is associated with elevated bile acids in Parkinson’s disease[J]. Metabolites, 2021, 11(1):29. | 
| [20] | Kalecky K, Bottiglieri T. Targeted metabolomic analysis in Parkinson’s disease brain frontal cortex and putamen with relation to cognitive impairment[J]. NPJ Parkinsons Dis, 2023, 9(1):84. | 
| [21] | Shao Y, Li T, Liu Z, et al. Comprehensive metabolic profiling of Parkinson’s disease by liquid chromatography-mass spectrometry[J]. Mol Neurodegener, 2021, 16(1):4. | 
| [22] | Hertel J, Harms AC, Heinken A, et al. Integrated analyses of microbiome and longitudinal metabolome data reveal microbial-host interactions on sulfur metabolism in Parkinson’s disease[J]. Cell Rep, 2019, 29(7):1767-1777. | 
| [23] | Nie K, Li Y, Zhang J, et al. Distinct bile acid signature in Parkinson’s disease with mild cognitive impairment[J]. Front Neurol, 2022, 13:897867. | 
| [24] | Graham SF, Rey NL, Ugur Z, et al. Metabolomic profiling of bile acids in an experimental model of prodromal Parkinson’s disease[J]. Metabolites, 2018, 8(4):71. | 
| [25] | Li Y, Glotfelty EJ, Karlsson T, et al. The metabolite GLP-1 (9-36) is neuroprotective and anti-inflammatory in cellular models of neurodegeneration[J]. J Neurochem, 2021, 159(5):867-886. doi: 10.1111/jnc.15521 pmid: 34569615 | 
| [26] | Reich N, Holscher C. The neuroprotective effects of glucagon-like peptide 1 in Alzheimer’s and Parkinson’s disease[J]. Front Neurosci, 2022, 16:970925. | 
| [27] | Huang F, Wang T, Lan Y, et al. Deletion of mouse FXR gene disturbs multiple neurotransmitter systems and alters neurobehavior[J]. Front Behav Neurosci, 2015, 9:70. doi: 10.3389/fnbeh.2015.00070 pmid: 25870546 | 
| [28] | Isik S, Yeman Kiyak B, Akbayir R, et al. Microglia mediated neuroinflammation in Parkinson’s disease[J]. Cells, 2023, 12(7):1012. | 
| [29] | Pan RY, He L, Zhang J, et al. Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer’s disease[J]. Cell Metab, 2022, 34(4):634-648. | 
| [30] | Romero-Ramirez L, Garcia-Rama C, Wu S, et al. Author correction: bile acids attenuate PKM2 pathway activation in proinflammatory microglia[J]. Sci Rep, 2022, 12(1):3399. doi: 10.1038/s41598-022-07497-6 pmid: 35197537 | 
| [31] | Kustrimovic N, Comi C, Magistrelli L, et al. Parkinson’s disease patients have a complex phenotypic and functional Th1 bias: Cross-sectional studies of CD4+ Th1/Th2/T17 and Treg in drug-naive and drug-treated patients[J]. J Neuroinflammation, 2018, 15(1):205. | 
| [32] | Hang S, Paik D, Yao L, et al. Bile acid metabolites control T(H)17 and T(reg) cell differentiation[J]. Nature, 2019, 576(7785):143-148. | 
| [33] | Wang L, Gong Z, Zhang X, et al. Gut microbial bile acid metabolite skews macrophage polarization and contributes to high-fat diet-induced colonic inflammation[J]. Gut Microbes, 2020, 12(1):1-20. doi: 10.1080/19490976.2020.1819155 pmid: 33006494 | 
| [34] | Chen C, Turnbull DM, Reeve AK. Mitochondrial dysfunction in Parkinson’s disease-cause or consequence?[J]. Biology (Basel), 2019, 8(2):38. | 
| [35] | Huang F, Pariante CM, Borsini A. From dried bear bile to molecular investigation: a systematic review of the effect of bile acids on cell apoptosis, oxidative stress and inflammation in the brain, across pre-clinical models of neurological, neurodegenerative and neuropsychiatric disorders[J]. Brain Behav Immun, 2022, 99:132-146. | 
| [36] | Rosa AI, Fonseca I, Nunes MJ, et al. Novel insights into the antioxidant role of tauroursodeoxycholic acid in experimental models of Parkinson’s disease[J]. Biochim Biophys Acta Mol Basis Dis, 2017, 1863(9):2171-2181. | 
| [37] | Rosa AI, Duarte-Silva S, Silva-Fernandes A, et al. Tauroursodeoxycholic acid improves motor symptoms in a mouse model of Parkinson’s disease[J]. Mol Neurobiol, 2018, 55(12):9139-9155. | 
| [38] | Khalaf K, Tornese P, Cocco A, et al. Tauroursodeoxycholic acid: a potential therapeutic tool in neurodegenerative diseases[J]. Transl Neurodegener, 2022, 11(1):33. doi: 10.1186/s40035-022-00307-z pmid: 35659112 | 
| [39] | Sathe AG, Tuite P, Chen C, et al. Pharmacokinetics, safety, and tolerability of orally administered ursodeoxycholic acid in patients with Parkinson’s disease-a pilot study[J]. J Clin Pharmacol, 2020, 60(6):744-750. | 
| [40] | Payne T, Appleby M, Buckley E, et al. A double-blind, randomized, placebo-controlled trial of ursodeoxycholic acid (UDCA) in Parkinson’s disease[J]. Mov Disord, 2023, 38(8):1493-1502. | 
| [41] | Wang K, Liao M, Zhou N, et al. Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids[J]. Cell Rep, 2019, 26(1):222-235.e5. doi: S2211-1247(18)31958-2 pmid: 30605678 | 
| [42] | Ahmed S, Busetti A, Fotiadou P, et al. In vitro characterization of gut microbiota-derived bacterial strains with neuroprotective properties[J]. Front Cell Neurosci, 2019, 13:402. doi: 10.3389/fncel.2019.00402 pmid: 31619962 | 
| [1] | 孙倩, 林诗雨, 夏梦婕, 周海燕, 王秀薇. 帕金森病疼痛的中西医治疗研究进展[J]. 内科理论与实践, 2025, 20(01): 50-53. | 
| [2] | 张凤娟, 杨钊. 中西医治疗帕金森病体位性低血压的研究进展[J]. 内科理论与实践, 2025, 20(01): 34-37. | 
| [3] | 于津, 汪杰, 王虎军, 王丛笑, 李瑛琦, 方伯言, 王颖鹏. 基于机器学习的功能性近红外光谱信号识别早期帕金森病患者的研究[J]. 诊断学理论与实践, 2024, 23(05): 484-493. | 
| [4] | 李媛媛, 姚小玲, 曲彦洁, 陈敬贤. 中药通过干预铁死亡治疗帕金森病的机制研究进展[J]. 内科理论与实践, 2024, 19(05): 351-356. | 
| [5] | 杨瑾, 韦瑶, 金钧. 胆汁酸与肠道菌群的相互作用及对脓毒症的影响[J]. 内科理论与实践, 2024, 19(03): 207-211. | 
| [6] | 王彬, 王书鸿, 王晓平. 第九届国际帕金森病暨运动障碍疾病研讨会/中国卒中学会移动医学上海分会会议纪要[J]. 内科理论与实践, 2024, 19(02): 149-151. | 
| [7] | 龚磊, 王珏, 曾志童, 李殿友, 孙伯民, 查庆华, 邱娴. 帕金森病患者居家环境对居家跌倒发生的影响研究[J]. 内科理论与实践, 2023, 18(06): 404-409. | 
| [8] | 陈艳, 倪幸欢, 朱倩, 刘琼. 以保护动机理论为基础的康复锻炼在帕金森病患者中的应用[J]. 内科理论与实践, 2023, 18(05): 339-343. | 
| [9] | 武冬冬, 李淑华, 苏闻, 刘银红, 陈海波, 陈頔. 抗帕金森病药物诱发5-羟色胺综合征1例[J]. 诊断学理论与实践, 2023, 22(03): 303-305. | 
| [10] | 魏坚, 孙杰, 崔诗爽. 帕金森病早期诊断诺谟图模型的建立及验证[J]. 诊断学理论与实践, 2023, 22(03): 277-282. | 
| [11] | 蒋兆彦, 沈惟一, 胡海. 肠道因素对胆石病防治的作用[J]. 外科理论与实践, 2023, 28(02): 91-93. | 
| [12] | 梁莉, 唐敏, 王晓平. 第八届国际帕金森病暨运动障碍研讨会上海会议纪要[J]. 内科理论与实践, 2023, 18(02): 135-136. | 
| [13] | 武冬冬, 陈玉辉, 刘芳, 刘银红, 蒋景文. 脑小血管疾病合并中枢神经系统退行性疾病机制的研究进展[J]. 诊断学理论与实践, 2022, 21(05): 644-649. | 
| [14] | 赵雅洁, 于晓璇, 王晓平. 第七届国际帕金森病暨运动障碍学术研讨会(上海)会议纪要[J]. 内科理论与实践, 2022, 17(05): 423-424. | 
| [15] | 王新新, 田敏, 张秀芳, 刘艺鸣. 帕金森病冻结步态的相关因素研究进展[J]. 内科理论与实践, 2022, 17(04): 339-343. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||