胆汁淤积性肝病与脂溶性维生素相互作用研究进展
傅小霜, 李磊 . 胆汁淤积性肝病与脂溶性维生素相互作用研究进展[J]. 内科理论与实践, 2022 , 17(01) : 84 -87 . DOI: 10.16138/j.1673-6087.2022.01.016
[1] | 曹旬旬, 高月求, 张文宏, 等. 基于上海市住院慢性肝病患者胆汁淤积患病率的调查研究[J]. 中华肝脏病杂志, 2015, 23(8): 569-573. |
[2] | 张雪梅, 李俊峰, 毛小荣. 胆汁酸代谢在肝硬化并发症中的研究进展[J]. 基础医学与临床, 2021, 41(1): 103-107. |
[3] | Tessitore M, Sorrentino E, Schiano Di Cola G, et al. Malnutrition in pediatric chronic cholestatic disease[J]. Nutrients, 2021, 13(8): 2785. |
[4] | Zoubek ME, Trautwein C, Strnad P. Reversal of liver fibrosis: from fiction to reality[J]. Best Pract Res Clin Gastroenterol, 2017, 31(2): 129-141. |
[5] | Li B, Cai SY, Boyer JL. The role of the retinoid receptor, RAR/RXR heterodimer, in liver physiology[J]. Biochim Biophys Acta Mol Basis Dis, 2021, 1867(5): 166085. |
[6] | Mamoon A, Subauste A, Subauste MC, et al. Retinoic acid regulates several genes in bile acid and lipid metabolism via upregulation of small heterodimer partner in hepatocytes[J]. Gene, 2014, 550(2): 165-170. |
[7] | Jahn D, Sutor D, Dorbath D, et al. Farnesoid X receptor-dependent and -independent pathways mediate the transcriptional control of human fibroblast growth factor 19 by vitamin A[J]. Biochim Biophys Acta, 2016, 1859(2): 381-392. |
[8] | He H, Mennone A, Boyer JL, et al. Combination of retinoic acid and ursodeoxycholic acid attenuates liver injury in bile duct-ligated rats and human hepatic cells[J]. Hepatology, 2010, 53(2): 548-557. |
[9] | 于文静, 师盼, 潘琼, 等. 胆汁淤积下FGF19-ERK通路可上调MRP3/4表达减轻肝细胞损伤[J]. 中国细胞生物学学报, 2019, 41(8): 1588-1594. |
[10] | Yuan Z, Wang G, Qu J, et al. 9-cis-retinoic acid elevates MRP3 expression by inhibiting sumoylation of RXRα to alleviate cholestatic liver injury[J]. Biochem Biophys Res Commun, 2018, 503(1): 188-194. |
[11] | Yu D, Cai SY, Mennone A, et al. Cenicriviroc, a cytokine receptor antagonist, potentiates all-trans retinoic acid in reducing liver injury in cholestatic rodents[J]. Liver Int, 2018, 38(6): 1128-1138. |
[12] | Takitani K, Kishi K, Miyazaki H, et al. Altered expression of retinol metabolism-related genes in an ANIT-induced cholestasis rat model[J]. Int J Mol Sci, 2018, 19(11): 3337. |
[13] | Quach HP, Noh K, Hoi SY, et al. Alterations in gene expression in vitamin D-deficiency: down-regulation of liver CYP7A1 and renal Oat3 in mice[J]. Biopharm Drug Dispos, 2018, 39(2): 99-115. |
[14] | Qin X, Wang X. Role of vitamin D receptor in the regulation of CYP3A gene expression[J]. Acta Pharm Sin B, 2019, 9(6): 1087-1098. |
[15] | Keane JT, Elangovan H, Stokes RA, et al. Vitamin D and the liver-correlation or cause?[J]. Nutrients, 2018, 10(4): 496. |
[16] | Sun S, Xu MH, Zhuang PJ, et al. Effect and mechanism of vitamin D activation disorder on liver fibrosis in biliary atresia[J]. Sci Rep, 2021, 11(1): 19883. |
[17] | Asgharpour P, Dezfouli MRM, Nadealian MG, et al. Effects of 1, 25-dihydroxy vitamin D3 on clinical symptoms, pro-inflammatory and inflammatory cytokines in calves with experimental pneumonia[J]. Res Vet Sci, 2020, 132: 186-193. |
[18] | Zhao G, Elhafiz M, Jiang J, et al. Adaptive homeostasis of the vitamin D-vitamin D nuclear receptor axis in 8-methoxypsoralen-induced hepatotoxicity[J]. Toxicol Appl Pharmacol, 2019, 362: 150-158. |
[19] | Firrincieli D, Zúñiga S, Rey C, et al. Vitamin D nuclear receptor deficiency promotes cholestatic liver injury by disruption of biliary epithelial cell junctions in mice[J]. Hepatology, 2013, 58(4): 1401-1412. |
[20] | Yasin M, Butt MS, Zeb A. Vitamin K2 rich food products[EB/J]. 2017. https://www.intechopen.com/chapters/51024. |
[21] | Sultana H, Watanabe K, Rana MM, et al. Effects of vitamin K2 on the expression of genes involved in bile acid synthesis and glucose homeostasis in mice with humanized PXR[J]. Nutrients, 2018, 10(8): 982. |
[22] | Avior Y, Levy G, Zimerman M, et al. Microbial-derived lithocholic acid and vitamin K2 drive the metabolic maturation of pluripotent stem cells-derived and fetal hepatocytes[J]. Hepatology, 2015, 62(1): 265-278. |
[23] | Yoshinari K. Role of nuclear receptors PXR and CAR in xenobiotic-induced hepatocyte proliferation and chemical carcinogenesis[J]. Biol Pharm Bull, 2019, 42(8): 1243-1252. |
[24] | Shizu R, Ishimura M, Nobusawa S, et al. The influence of the long-term chemical activation of the nuclear receptor pregnane X receptor (PXR) on liver carcinogenesis in mice[J]. Arch Toxicol, 2021, 95(3): 1089-1102. |
[25] | Jiao K, Sun Q, Chen B, et al. Vitamin K1 attenuates bile duct ligation-induced liver fibrosis in rats[J]. Scand J Gastroenterol, 2014, 49(6): 715-721. |
[26] | Zhao LY, Xu JY, Shi Z, et al. Pregnane X receptor (PXR) deficiency improves high fat diet-induced obesity via induction of fibroblast growth factor 15 (FGF15) expression[J]. Biochem Pharmacol, 2017, 142: 194-203. |
[27] | Dempsey JL, Wang D, Siginir G, et al. Pharmacological activation of PXR and CAR downregulates distinct bile acid-metabolizing intestinal bacteria and alters bile acid homeostasis[J]. Toxicol Sci, 2018, 168(1): 40-60. |
[28] | 中华医学会感染病学分会肝衰竭与人工肝学组, 中华医学会肝病学分会重型肝病与人工肝学组. 肝衰竭诊治指南(2018年版)[J]. 临床肝胆病杂志, 2019, 35(1): 38-44. |
[29] | Luangmonkong T, Suriguga S, Mutsaers HAM, et al. Targeting oxidative stress for the treatment of liver fibrosis[J]. Rev Physiol Biochem Pharmacol, 2018, 175: 71-102. |
[30] | Barbakadze G, Khachidze T, Sulaberidze G, et al. Comparative analysis of efficiency of ursodeoxycholic acid and combination of vitamin E and vitamin C in treatment of non-diabetic nonalcojolic steatohepatitis[J]. Georgian Med News, 2019, 288: 81-85. |
[31] | Banini BA, Sanyal AJ. Current and future pharmacologic treatment of nonalcoholic steatohepatitis[J]. Curr Opin Gastroenterol, 2017, 33(3): 134-141. |
[32] | 梁慧聪, 丁转南, 袁冠华, 等. 孕期维生素A、E水平与妊娠期肝内胆汁淤积症相关性研究[J]. 中国实用医药, 2020, 15(13): 75-77. |
/
〈 |
|
〉 |