Journal of Internal Medicine Concepts & Practice ›› 2021, Vol. 16 ›› Issue (05): 361-365.doi: 10.16138/j.1673-6087.2021.05.015
• Review article • Previous Articles Next Articles
Received:
2021-06-21
Online:
2021-10-20
Published:
2022-07-25
CLC Number:
[1] |
Kardos J, Héja L, Simon á, et al. Copper signalling: causes and consequences[J]. Cell Commun Signal, 2018, 16(1): 71.
doi: 10.1186/s12964-018-0277-3 URL |
[2] |
Chen J, Jiang Y, Shi H, et al. The molecular mechanisms of copper metabolism and its roles in human diseases[J]. Pflugers Arch, 2020, 472(10): 1415-1429.
doi: 10.1007/s00424-020-02412-2 URL |
[3] |
Zaccak M, Qasem Z, Gevorkyan-Airapetov L, et al. An EPR study on the interaction between the Cu(I) metal binding domains of ATP7B and the ATOX1 metallochaperone[J]. Int J Mol Sci, 2020, 21(15): 5536.
doi: 10.3390/ijms21155536 URL |
[4] |
Santoro A, Calvo JS, Peris-Díaz MD, et al. The glutathione/metallothionein system challenges the design of efficient O2 -activating copper complexes[J]. Angew Chem Int Ed Engl, 2020, 59(20): 7830-7835.
doi: 10.1002/anie.201916316 URL |
[5] |
Scheiber IF, Bruha R, Dušek P. Pathogenesis of Wilson disease[J]. Handb Clin Neurol, 2017, 142: 43-55.
doi: B978-0-444-63625-6.00005-7 pmid: 28433109 |
[6] |
Antonucci L, Porcu C, Iannucci G, et al. Non-alcoholic fatty liver disease and nutritional implications: special focus on copper[J]. Nutrients, 2017, 9(10): 1137.
doi: 10.3390/nu9101137 URL |
[7] |
Yu CH, Lee W, Nokhrin S, et al. The structure of metal binding domain 1 of the copper transporter ATP7B reveals mechanism of a singular Wilson disease mutation[J]. Sci Rep, 2018, 8(1): 581.
doi: 10.1038/s41598-017-18951-1 URL |
[8] |
Braiterman LT, Gupta A, Chaerkady R, et al. Communication between the N and C termini is required for copper-stimulated Ser/Thr phosphorylation of Cu(I)-ATPase (ATP7B)[J]. J Biol Chem, 2015, 290(14): 8803-8819.
doi: 10.1074/jbc.M114.627414 pmid: 25666620 |
[9] |
Kluska A, Kulecka M, Litwin T, et al. Whole-exome sequencing identifies novel pathogenic variants across the ATP7B gene and some modifiers of Wilson’s disease phenotype[J]. Liver Int, 2019, 39(1): 177-186.
doi: 10.1111/liv.13967 pmid: 30230192 |
[10] | Chang IJ, Hahn SH. The genetics of Wilson disease[J]. Handb Clin Neurol, 2017, 142: 19-34. |
[11] | Hua R, Hua F, Jiao Y, et al. Mutational analysis of ATP7B in Chinese Wilson disease patients[J]. Am J Transl Res, 2016, 8(6): 2851-2861. |
[12] |
Cheng N, Wang H, Wu W, et al. Spectrum of ATP7B mutations and genotype-phenotype correlation in large-scale Chinese patients with Wilson disease[J]. Clin Genet, 2017, 92(1): 69-79.
doi: 10.1111/cge.12951 pmid: 27982432 |
[13] | Braiterman LT, Murthy A, Jayakanthan S, et al. Distinct phenotype of a Wilson disease mutation reveals a novel trafficking determinant in the copper transporter ATP7B[J]. Proc Natl Acad Sci U S A, 2014, 111(14): E1364-E1373. |
[14] |
Fanni D, Gerosa C, Nurchi VM, et al. Copper-induced epigenetic changes shape the clinical phenotype in Wilson’s disease[J]. Curr Med Chem, 2021, 28(14): 2707-2716.
doi: 10.2174/0929867327666200730214757 URL |
[15] |
Ferenci P, Stremmel W, Członkowska A, et al. Age and sex but not ATP7B genotype effectively influence the clinical phenotype of Wilson disease[J]. Hepatology, 2019, 69(4): 1464-1476.
doi: 10.1002/hep.30280 pmid: 30232804 |
[16] | 周霄颖, 尹瀚浚, 王春莉, 等. 55例肝豆状核变性患儿表型与基因型分析[J]. 中华肝脏病杂志, 2020, 28(7): 603-607. |
[17] | Borchard S, Bork F, Rieder T, et al. The exceptional sensitivity of brain mitochondria to copper[J]. Toxicol In Vitro, 2018, 51: 11-22. |
[18] |
Huster D. Structural and metabolic changes in Atp7b-/- mouse liver and potential for new interventions in Wilson’s disease[J]. Ann N Y Acad Sci, 2014, 1315: 37-44.
doi: 10.1111/nyas.12337 URL |
[19] |
Mikol J, Vital C, Wassef M, et al. Extensive cortico-subcortical lesions in Wilson’s disease: clinico-pathological study of two cases[J]. Acta Neuropathol, 2005, 110(5): 451-458.
doi: 10.1007/s00401-005-1061-1 URL |
[20] |
Smolinski L, Litwin T, Redzia-Ogrodnik B, et al. Brain volume is related to neurological impairment and to copper overload in Wilson’s disease[J]. Neurol Sci, 2019, 40(10): 2089-2095.
doi: 10.1007/s10072-019-03942-z pmid: 31147855 |
[21] |
Doganay S, Gumus K, Koc G, et al. Magnetic susceptibility changes in the basal ganglia and brain stem of patients with Wilson’s disease: evaluation with quantitative susceptibility mapping[J]. Magn Reson Med Sci, 2018, 17(1): 73-79.
doi: 10.2463/mrms.mp.2016-0145 pmid: 28515413 |
[22] | Poujois A, Mikol J, Woimant F. Wilson disease: brain pathology[J]. Handb Clin Neurol, 2017, 142: 77-89. |
[23] |
Mariani S, Ventriglia M, Simonelli I, et al. Fe and Cu do not differ in Parkinson’s disease: a replication study plus meta-analysis[J]. Neurobiol Aging, 2013, 34(2): 632-633.
doi: 10.1016/j.neurobiolaging.2012.05.015 URL |
[24] |
Pall HS, Williams AC, Blake DR, et al. Raised cerebrospinal-fluid copper concentration in Parkinson’s disease[J]. Lancet, 1987, 2(8553): 238-241.
pmid: 2886715 |
[25] |
Davies KM, Bohic S, Carmona A, et al. Copper pathology in vulnerable brain regions in Parkinson’s disease[J]. Neurobiol Aging, 2014, 35(4): 858-866.
doi: 10.1016/j.neurobiolaging.2013.09.034 URL |
[26] |
Miotto MC, Rodriguez EE, Valiente-Gabioud AA, et al. Site-specific copper-catalyzed oxidation of α-synuclein: tightening the link between metal binding and protein oxidative damage in Parkinson’s disease[J]. Inorg Chem, 2014, 53(9): 4350-4358.
doi: 10.1021/ic4031377 pmid: 24725094 |
[27] |
Bisaglia M, Bubacco L. Copper ions and Parkinson’s disease: why is homeostasis so relevant?[J]. Biomolecules, 2020, 10(2): 195.
doi: 10.3390/biom10020195 URL |
[28] |
Horvath I, Blockhuys S, Šulskis D, et al. Interaction between copper chaperone ATOX1 and Parkinson’s disease protein α-synuclein includes metal-binding sites and occurs in living cells[J]. ACS Chem Neurosci, 2019, 10(11): 4659-4668.
doi: 10.1021/acschemneuro.9b00476 pmid: 31600047 |
[29] |
Gou DH, Huang TT, Li W, et al. Inhibition of copper transporter 1 prevents α-synuclein pathology and alleviates nigrostriatal degeneration in AAV-based mouse model of Parkinson’s disease[J]. Redox Biol, 2021, 38: 101795.
doi: 10.1016/j.redox.2020.101795 URL |
[30] |
Ha Y, Yang A, Lee S, et al. Dopamine and Cu+/2+ can induce oligomerization of alpha-synuclein in the absence of oxygen: two types of oligomerization mechanisms for alpha-synuclein and related cell toxicity studies[J]. J Neurosci Res, 2014, 92(3): 359-368.
doi: 10.1002/jnr.23323 URL |
[31] |
Tavassoly O, Nokhrin S, Dmitriev OY, et al. Cu(Ⅱ) and dopamine bind to α-synuclein and cause large conformational changes[J]. Febs J, 2014, 281(12): 2738-2753.
doi: 10.1111/febs.12817 pmid: 24725464 |
[32] |
Tian S, Jones SM, Jose A, et al. Chloride control of the mechanism of human serum ceruloplasmin (Cp) catalysis[J]. J Am Chem Soc, 2019, 141(27): 10736-10743.
doi: 10.1021/jacs.9b03661 URL |
[33] |
Wang B, Wang XP. Does ceruloplasmin defend against neurodegenerative diseases?[J]. Curr Neuropharmacol, 2019, 17(6): 539-549.
doi: 10.2174/1570159X16666180508113025 pmid: 29737252 |
[34] |
Ayton S, Lei P, Duce JA, et al. Ceruloplasmin dysfunction and therapeutic potential for Parkinson disease[J]. Ann Neurol, 2013, 73(4): 554-559.
doi: 10.1002/ana.23817 URL |
[35] |
Trist BG, Davies KM, Cottam V, et al. Amyotrophic lateral sclerosis-like superoxide dismutase 1 proteinopathy is associated with neuronal loss in Parkinson’s disease brain[J]. Acta Neuropathol, 2017, 134(1): 113-127.
doi: 10.1007/s00401-017-1726-6 URL |
[36] |
Wright GSA. Molecular and pharmacological chaperones for SOD1[J]. Biochem Soc Trans, 2020, 48(4): 1795-1806.
doi: 10.1042/BST20200318 URL |
[37] |
Squitti R, Simonelli I, Ventriglia M, et al. Meta-analysis of serum non-ceruloplasmin copper in Alzheimer’s disease[J]. J Alzheimers Dis, 2014, 38(4): 809-822.
doi: 10.3233/JAD-131247 URL |
[38] |
Schrag M, Mueller C, Zabel M, et al. Oxidative stress in blood in Alzheimer’s disease and mild cognitive impairment: a meta-analysis[J]. Neurobiol Dis, 2013, 59: 100-110.
doi: 10.1016/j.nbd.2013.07.005 pmid: 23867235 |
[39] |
Li DD, Zhang W, Wang ZY, et al. Serum copper, zinc, and iron levels in patients with Alzheimer’s disease[J]. Front Aging Neurosci, 2017, 9: 300.
doi: 10.3389/fnagi.2017.00300 URL |
[40] |
Wang ZX, Tan L, Wang HF, et al. Serum iron, zinc, and copper levels in patients with Alzheimer’s disease[J]. J Alzheimers Dis, 2015, 47(3): 565-581.
doi: 10.3233/JAD-143108 URL |
[41] |
Cheignon C, Tomas M, Bonnefont-Rousselot D, et al. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease[J]. Redox Biol, 2018, 14: 450-464.
doi: S2213-2317(17)30726-7 pmid: 29080524 |
[42] |
Kepp KP. Alzheimer’s disease due to loss of function: a new synthesis of the available data[J]. Prog Neurobiol, 2016, 143: 36-60.
doi: 10.1016/j.pneurobio.2016.06.004 URL |
[43] |
Squitti R, Siotto M, Arciello M, et al. Non-ceruloplasmin bound copper and ATP7B gene variants in Alzheimer’s disease[J]. Metallomics, 2016, 8(9): 863-873.
doi: 10.1039/c6mt00101g pmid: 27499330 |
[1] | . [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(05): 289-293. |
[2] | . [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(05): 294-298. |
[3] | . [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(05): 299-303. |
[4] | . [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(05): 304-307. |
[5] | . [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(05): 308-314. |
[6] | HONG Peiwei, CONG Xue, XU Yanming. Cost of hospitalization of patients with hepatolenticular degeneration in southwest of China: data analysis during 2005-2020 [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(05): 315-318. |
[7] | HUANG Qing, WANG Gang. Clinical phenotype and survival analysis of 106 cases of hepatolenticular degeneration [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(05): 319-324. |
[8] | DONG Zhengchuan, WANG Gang. Analysis and predictive factors of resilience of caregivers for patients with Parkinson disease [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(05): 325-330. |
[9] | . [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(05): 354-358. |
[10] | . [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(05): 359-360. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||