Journal of Internal Medicine Concepts & Practice ›› 2022, Vol. 17 ›› Issue (03): 267-272.doi: 10.16138/j.1673-6087.2022.03.019
• Review article • Previous Articles
Received:
2021-12-31
Online:
2022-05-30
Published:
2022-08-09
CLC Number:
[1] |
Demirkaya E, Sahin S, Romano M. New horizons in the genetic etiology of systemic lupus erythematosus and lupus-like disease:monogenic lupus and beyond[J]. J Clin Med, 2020, 9(3): 712.
doi: 10.3390/jcm9030712 URL |
[2] |
Alperin JM, Ortiz-Fernández L, Sawalha AH. Monogenic lupus: a developing paradigm of disease[J]. Front Immunol, 2018, 9:2496.
doi: 10.3389/fimmu.2018.02496 pmid: 30459768 |
[3] |
Nozal P, Garrido S, Martínez-Ara J, et al. Case report: lupus nephritis with autoantibodies to complement alternative pathway proteins and C3 gene mutation[J]. BMC Nephrol, 2015, 16: 40.
doi: 10.1186/s12882-015-0032-6 URL |
[4] |
Kim MJ, Lee H, Kim YH, et al. Eculizumab therapy on a patient with co-existent lupus nephritis and C3 mutation-related atypical haemolytic uremic syndrome: a case report[J]. BMC Nephrol, 2021, 22(1): 86.
doi: 10.1186/s12882-021-02293-2 URL |
[5] |
Tang W, Wang H, Tian R, et al. Bcl-3 inhibits lupus-like phenotypes in BL6/lpr mice[J]. Eur J Immunol, 2021, 51(1): 197-205.
doi: 10.1002/eji.202048584 URL |
[6] | Hartl J, Serpas L, Wang Y, et al. Autoantibody-mediated impairment of DNASE1L3 activity in sporadic systemic lupus erythematosus[J]. J Exp Med, 2021, 218(5): e2020 1138. |
[7] |
Kenny EF, Raupach B, Abu Abed U, et al. Dnase1-deficient mice spontaneously develop a systemic lupus erythematosus-like disease[J]. Eur J Immunol, 2019, 49(4): 590-599.
doi: 10.1002/eji.201847875 URL |
[8] | Hosseini SA, Labilloy A. Genetics TREX 1 Mutations[M]// StatPearls. Treasure island. FL: StatPearls Publishing. 2021. |
[9] |
Endo Y, Koga T, Otaki H, et al. Systemic lupus erythematosus overlapping dermatomyositis owing to a heterozygous TREX1 Asp130Asn missense mutation[J]. Clin Immunol, 2021, 227: 108732.
doi: 10.1016/j.clim.2021.108732 URL |
[10] |
Liu Y, Jesus AA, Marrero B, et al. Activated STING in a vascular and pulmonary syndrome[J]. N Engl J Med, 2014, 371(6): 507-518.
doi: 10.1056/NEJMoa1312625 URL |
[11] |
Kara B, Ekinci Z, Sahin S, et al. Monogenic lupus due to spondyloenchondrodysplasia with spastic paraparesis and intracranial calcification: case-based review[J]. Rheumatol Int, 2020, 40(11):1903-1910.
doi: 10.1007/s00296-020-04653-x URL |
[12] |
Ravenscroft JC, Suri M, Rice GI, et al. Autosomal dominant inheritance of a heterozygous mutation in SAMHD1 causing familial chilblain lupus[J]. Am J Med Genet A, 2011, 155A(1): 235-237.
doi: 10.1002/ajmg.a.33778 pmid: 21204240 |
[13] |
Belot A, Kasher PR, Trotter EW, et al. Protein kinase cδ deficiency causes mendelian systemic lupus erythematosus with B cell-defective apoptosis and hyperproliferation[J]. Arthritis Rheum, 2013, 65(8): 2161-2171.
doi: 10.1002/art.38008 URL |
[14] |
Miyamoto A, Nakayama K, Imaki H, et al. Increased proliferation of B cells and auto-immunity in mice lacking protein kinase C delta[J]. Nature, 2002, 416(6883): 865-869.
doi: 10.1038/416865a URL |
[15] | He Y, Gallman AE, Xie C, et al. P2RY8 variants in lupus patients uncover a role for the receptor in immunological tolerance[J]. J Exp Med, 2022, 219(1):e20211004. |
[16] |
Ha E, Bae SC, Kim K. Recent advances in understanding the genetic basis of systemic lupus erythematosus: seminars in immunopathology[J]. Semin Immunopathol, 2022, 44(1): 29-46.
doi: 10.1007/s00281-021-00900-w URL |
[17] |
Nehar-Belaid D, Hong S, Marches R, et al. Mapping systemic lupus erythematosus heterogeneity at the single-cell leve[J]. Nat Immunol, 2020, 21(9): 1094-1106.
doi: 10.1038/s41590-020-0743-0 pmid: 32747814 |
[18] |
Kwon YC, Chun S, Kim K, et al. Update on the genetics of systemic lupus erythematosus: genome-wide association studies and beyond[J]. Cells, 2019, 8(10): 1180.
doi: 10.3390/cells8101180 URL |
[19] |
Fernando MM, Stevens CR, Sabeti PC, et al. Identification of two independent risk factors for lupus within the MHC in United Kingdom families[J]. PLoS Genet, 2007, 3(11): e192.
doi: 10.1371/journal.pgen.0030192 URL |
[20] |
Zhang F, Wang YF, Zhang Y, et al. Independent replication on genome-wide association study signals identifies IRF3 as a novel locus for systemic lupus erythematosus[J]. Front Genet, 2020, 11: 600.
doi: 10.3389/fgene.2020.00600 URL |
[21] |
Graham RR, Kyogoku C, Sigurdsson S, et al. Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus[J]. Proc Natl Acad Sci U S A, 2007, 104(16): 6758-6763.
doi: 10.1073/pnas.0701266104 URL |
[22] |
Hambleton S, Salem S, Bustamante J, et al. IRF8 mutations and human dendritic-cell immunodeficiency[J]. N Engl J Med, 2011, 365(2): 127-138.
doi: 10.1056/NEJMoa1100066 URL |
[23] |
Salloum R, Franek BS, Kariuki SN, et al. Genetic variation at the IRF7/PHRF1 locus is associated with autoantibody profile and serum interferon-alpha activity in lupus patients[J]. Arthritis Rheum, 2010, 62(2): 553-561.
doi: 10.1002/art.27182 URL |
[24] |
Deng Y, Zheng Y, Li D, et al. Expression characteristics of interferon-stimulated genes and possible regulatory mechanisms in lupus patients using transcriptomics analyses[J]. EBioMedicine, 2021, 70: 103477.
doi: 10.1016/j.ebiom.2021.103477 URL |
[25] |
Alunno A, Padjen I, Fanouriakis A, et al. Pathogenic and therapeutic relevance of JAK/STAT signaling in systemic lupus erythematosus: integration of distinct inflammatory pathways and the prospect of their inhibition with an oral agent[J]. Cells, 2019, 8(8): 898.
doi: 10.3390/cells8080898 URL |
[26] |
Robinson T, Kariuki SN, Franek BS, et al. Autoimmune disease risk variant of IFIH1 is associated with increased sensitivity to IFN-α and serologic autoimmunity in lupus patients[J]. J Immunol, 2011, 187(3): 1298-1303.
doi: 10.4049/jimmunol.1100857 pmid: 21705624 |
[27] | Kaleta B, Mróz P, Górski A, et al. The preliminary association study of osteopontin 707 C/T polymorphism with systemic lupus erythematosus in a Polish population[J]. Postepy Dermatol Alergol, 2020, 37(2): 190-194. |
[28] |
D’Alfonso S, Barizzone N, Giordano M, et al. Two single-nucleotide polymorphisms in the 5’ and 3’ ends of the osteopontin gene contribute to susceptibility to systemic lupus erythematosus[J]. Arthritis Rheum, 2005, 52(2): 539-547.
doi: 10.1002/art.20808 URL |
[29] |
Vigato-Ferreira IC, Toller-Kawahisa JE, Pancoto JA, et al. FcgammaRⅡa and FcgammaRⅢb polymorphisms and associations with clinical manifestations in systemic lupus erythematosus patients[J]. Autoimmunity, 2014, 47(7): 451-458.
doi: 10.3109/08916934.2014.921809 pmid: 24896836 |
[30] |
Dai M, Zhou Z, Wang X, et al. Association of FcγRⅢa-158V/F with systemic lupus erythematosus in a Chinese population[J]. Int J Rheum Dis, 2013, 16(6):685-691.
doi: 10.1111/1756-185X.12176 URL |
[31] |
Rizk MM, Elsayed ET, ElKeraie AF, et al. Association of tumor necrosis factor alpha-induced protein 3 interacting protein 1 (TNIP1) gene polymorphism (rs7708392) with lupus nephritis in Egyptian patients[J]. Biochem Genet, 2018, 56(5): 478-488.
doi: 10.1007/s10528-018-9855-8 URL |
[32] |
Musone SL, Taylor KE, Lu TT, et al. Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus[J]. Nat Genet, 2008, 40(9):1062-1064.
doi: 10.1038/ng.202 pmid: 19165919 |
[33] | Zhou J, Wu R, High AA, et al. A20-binding inhibitor of NF-κB (ABIN1) controls Toll-like receptor-mediated CCAAT/enhancer-binding protein β activation and protects from inflammatory disease[J]. Proc Natl Acad Sci U S A, 2011, 108(44): E998-E1006. |
[34] |
Hövelmeyer N, Reissig S, Xuan NT, et al. A20 deficiency in B cells enhances B-cell proliferation and results in the development of autoantibodies[J]. Eur J Immunol, 2011, 41(3): 595-601.
doi: 10.1002/eji.201041313 pmid: 21341261 |
[35] | Khan SQ, Khan I, Gupta V. CD11b activity modulates pathogenesis of lupus nephritis[J]. Front Med (Lausanne), 2018, 5: 52. |
[36] |
Dam EM, Habib T, Chen J, et al. The BANK1 SLE-risk variants are associated with alterations in peripheral B cell signaling and development in humans[J]. Clin Immunol, 2016, 173: 171-180.
doi: 10.1016/j.clim.2016.10.018 URL |
[37] |
Lamagna C, Hu Y, DeFranco AL, et al. B cell-specific loss of Lyn kinase leads to autoimmunity[J]. J Immunol, 2014, 192(3): 919-928.
doi: 10.4049/jimmunol.1301979 URL |
[38] |
Samuelson EM, Laird RM, Maue AC, et al. Blk haploinsufficiency impairs the development, but enhances the functional responses, of MZ B cells[J]. Immunol Cell Biol, 2012, 90(6): 620-629.
doi: 10.1038/icb.2011.76 URL |
[39] |
Alonso-Perez E, Suarez-Gestal M, Calaza M, et al. Further evidence of subphenotype association with systemic lupus erythematosus susceptibility loci: a European cases only study[J]. PloS One, 2012, 7(9): e45356.
doi: 10.1371/journal.pone.0045356 URL |
[40] |
Tizaoui K, Terrazzino S, Cargnin S, et al. The role of PTPN22 in the pathogenesis of autoimmune diseases: a comprehensive review[J]. Semin Arthritis Rheum, 2021, 51(3): 513-522.
doi: 10.1016/j.semarthrit.2021.03.004 URL |
[41] |
Yin X, Kim K, Suetsugu H, et al. Meta-analysis of 208370 East Asians identifies 113 susceptibility loci for systemic lupus erythematosus[J]. Ann Rheum Dis, 2021, 80(5): 632-640.
doi: 10.1136/annrheumdis-2020-219209 URL |
[42] |
Chen L, Niu Q, Huang Z, et al. IKZF1 polymorphisms are associated with susceptibility, cytokine levels, and clinical features in systemic lupus erythematosus[J]. Medicine, 2020, 99(41): e22607.
doi: 10.1097/MD.0000000000022607 URL |
[43] |
Bentham J, Morris DL, Graham DSC, et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosuss[J]. Nat Genet, 2015, 47(12): 1457-1464.
doi: 10.1038/ng.3434 pmid: 26502338 |
[44] |
Sitrin J, Suto E, Wuster A, et al. The Ox40/Ox40 ligand pathway promotes pathogenic Th cell responses, plasmablast accumulation, and lupus nephritis in NZB/W F1 mice[J]. J Immunol, 2017, 199(4): 1238-1249.
doi: 10.4049/jimmunol.1700608 URL |
[1] | ZHOU Yi, CHEN Ying, CHEN Erzhen. Research progress of thyroid hormone on organ function maintenance in sepsis [J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(05): 408-412. |
[2] | . [J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(04): 339-343. |
[3] | . [J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(03): 262-266. |
[4] | . [J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(03): 258-261. |
[5] | . [J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(03): 202-207. |
[6] | . [J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(03): 181-185. |
[7] | . [J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(03): 186-189. |
[8] | . [J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(03): 190-194. |
[9] | . [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(04): 270-271. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||