Journal of Internal Medicine Concepts & Practice ›› 2023, Vol. 18 ›› Issue (02): 131-134.doi: 10.16138/j.1673-6087.2023.02.015
• Review article • Previous Articles Next Articles
PAN Roubai, ZONG Xiao, TAO Rong()
Received:
2021-11-12
Online:
2023-04-25
Published:
2023-05-15
CLC Number:
PAN Roubai, ZONG Xiao, TAO Rong. Effect of probiotics on ventricular remodeling[J]. Journal of Internal Medicine Concepts & Practice, 2023, 18(02): 131-134.
[51] |
Yelin I, Flett KB, Merakou C, et al. Genomic and epidemiological evidence of bacterial transmission from probiotic capsule to blood in ICU patients[J]. Nat Med, 2019, 25(11): 1728-1732.
doi: 10.1038/s41591-019-0626-9 pmid: 31700189 |
[52] |
Merenstein D, Pot B, Leyer G, et al. Emerging issues in probiotic safety: 2023 perspectives[J]. Gut Microbes, 2023, 15(1): 2185034.
doi: 10.1080/19490976.2023.2185034 URL |
[1] |
Robertson RC, Manges AR, Finlay BB, et al. The human microbiome and child growth-first 1000 days and beyond[J]. Trends Microbiol, 2019, 27(2): 131-147.
doi: S0966-842X(18)30204-X pmid: 30529020 |
[2] |
Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, et al. Mapping human microbiome drug metabolism by gut bacteria and their genes[J]. Nature, 2019, 570(7762): 462-467.
doi: 10.1038/s41586-019-1291-3 |
[3] | Bessède E, Mégraud F. Microbiota and gastric cancer[J]. Semin Cancer Biol, 2022, 86 Pt 3: 11-17. |
[4] |
Kastl AJ Jr, Terry NA, Wu GD, et al. The structure and function of the human small intestinal microbiota[J]. Cell Mol Gastroenterol Hepatol, 2020, 9(1): 33-45.
doi: 10.1016/j.jcmgh.2019.07.006 URL |
[5] |
Adak A, Khan MR. An insight into gut microbiota and its functionalities[J]. Cell Mol Life Sci, 2019, 76(3): 473-493.
doi: 10.1007/s00018-018-2943-4 pmid: 30317530 |
[6] |
Tilg H, Zmora N, Adolph TE, et al. The intestinal microbiota fuelling metabolic inflammation[J]. Nat Rev Immunol, 2020, 20(1): 40-54.
doi: 10.1038/s41577-019-0198-4 pmid: 31388093 |
[7] |
Zhao J, Zhang X, Liu H, et al. Dietary protein and gut microbiota composition and function[J]. Curr Protein Pept Sci, 2019, 20(2): 145-154.
doi: 10.2174/1389203719666180514145437 URL |
[8] |
Schoeler M, Caesar R. Dietary lipids, gut microbiota and lipid metabolism[J]. Rev Endocr Metab Disord, 2019, 20(4): 461-472.
doi: 10.1007/s11154-019-09512-0 |
[9] |
Zmora N, Suez J, Elinav E. You are what you eat: diet, health and the gut microbiota[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(1): 35-56.
doi: 10.1038/s41575-018-0061-2 pmid: 30262901 |
[10] |
Cryan JF, O’Riordan KJ, Cowan CSM, et al. The microbiota-gut-brain axis[J]. Physiol Rev, 2019, 99(4): 1877-2013.
doi: 10.1152/physrev.00018.2018 pmid: 31460832 |
[11] |
Vich Vila A, Collij V, Sanna S, et al. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota[J]. Nat Commun, 2020, 11(1): 362.
doi: 10.1038/s41467-019-14177-z pmid: 31953381 |
[12] |
Boorsma EM, Ter Maaten JM, Damman K, et al. Congestion in heart failure: a contemporary look at physiology, diagnosis and treatment[J]. Nat Rev Cardiol, 2020, 17(10): 641-655.
doi: 10.1038/s41569-020-0379-7 pmid: 32415147 |
[13] | Aquila I, Shah AM. Ventricular remodeling in heart failure[M]. Encyclopedia of Cardiovascular Research and Medicine, Elsevier: Oxford, 2018: 683-689. |
[14] |
Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy[J]. Nat Rev Cardiol, 2018, 15(7): 387-407.
doi: 10.1038/s41569-018-0007-y pmid: 29674714 |
[15] |
Wu QQ, Xiao Y, Yuan Y, et al. Mechanisms contributing to cardiac remodelling[J]. Clin Sci (Lond), 2017, 131(18): 2319-2345.
doi: 10.1042/CS20171167 URL |
[16] |
Roger VL. Epidemiology of heart failure: a contemporary perspective[J]. Circ Res, 2021, 128(10): 1421-1434.
doi: 10.1161/CIRCRESAHA.121.318172 pmid: 33983838 |
[17] |
Frantz S, Hundertmark MJ, Schulz-Menger J, et al. Left ventricular remodelling post-myocardial infarction: pathophysiology, imaging, and novel therapies[J]. Eur Heart J, 2022, 43(27): 2549-2561.
doi: 10.1093/eurheartj/ehac223 pmid: 35511857 |
[18] |
Sadeghzadeh J, Vakili A, Sameni HR, et al. The effect of oral consumption of probiotics in prevention of heart injury in a rat myocardial infarction model[J]. Iran Biomed J, 2017, 21(3):174-181.
doi: 10.18869/acadpub.ibj.21.3.174 pmid: 27874107 |
[19] |
Lam V, Su J, Koprowski S, et al. Intestinal microbiota determine severity of myocardial infarction in rats[J]. FASEB J, 2012, 26(4): 1727-1735.
doi: 10.1096/fj.11-197921 pmid: 22247331 |
[20] |
Anaruma CP, Pereira RM, Anaruma CP, et al. Rock protein as cardiac hypertrophy modulator in obesity and physical exercise[J]. Life Sci, 2020, 254: 116955.
doi: 10.1016/j.lfs.2019.116955 URL |
[21] |
Gan XT, Ettinger G, Huang CX, et al. Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat[J]. Circ Heart Fail, 2014, 7(3): 491-499.
doi: 10.1161/CIRCHEARTFAILURE.113.000978 pmid: 24625365 |
[22] |
Qaradakhi T, Gadanec LK, McSweeney KR, et al. The anti-inflammatory effect of taurine on cardiovascular disease[J]. Nutrients, 2020, 12(9): 2847.
doi: 10.3390/nu12092847 URL |
[23] |
Ettinger G, Burton JP, Gloor GB, et al. Lactobacillus rhamnosus GR-1 attenuates induction of hypertrophy in cardiomyocytes but not through secreted protein MSP-1(p75)[J]. PLoS One, 2017, 12(1): e0168622.
doi: 10.1371/journal.pone.0168622 URL |
[24] | Wang N, Song G, Yang Y, et al. Inactivated lactobacillus promotes protection against myocardial ischemia-reperfusion injury through NF-κB pathway[J]. Biosci Rep, 2017, 37(6): BSR20171025. |
[25] |
Moludi J, Khedmatgozar H, Nachvak SM, et al. The effects of co-administration of probiotics and prebiotics on chronic inflammation, and depression symptoms in patients with coronary artery diseases: a randomized clinical trial[J]. Nutr Neurosci, 2022, 25(8): 1659-1668.
doi: 10.1080/1028415X.2021.1889451 URL |
[26] |
Moludi J, Kafil HS, Qaisar SA, et al. Effect of probiotic supplementation along with calorie restriction on metabolic endotoxemia, and inflammation markers in coronary artery disease patients[J]. Nutr J, 2021, 20(1): 47.
doi: 10.1186/s12937-021-00703-7 pmid: 34074289 |
[27] |
Ong SB, Hernández-Reséndiz S, Crespo-Avilan GE, et al. Inflammation following acute myocardial infarction: multiple players, dynamic roles, and novel therapeutic opportunities[J]. Pharmacol Ther, 2018, 186: 73-87.
doi: 10.1016/j.pharmthera.2018.01.001 URL |
[28] |
Moludi J, Saiedi S, Ebrahimi B, et al. Probiotics supplementation on cardiac remodeling following myocardial infarction[J]. J Cardiovasc Transl Res, 2021, 14(2): 299-307.
doi: 10.1007/s12265-020-10052-1 |
[29] |
Li Z, Wu Z, Yan J, et al. Gut microbe-derived metabolite trimethylamine N-oxide induces cardiac hypertrophy and fibrosis[J]. Lab Invest, 2019, 99(3): 346-357.
doi: 10.1038/s41374-018-0091-y pmid: 30068915 |
[30] |
Yao ME, Liao PD, Zhao XJ, et al. Trimethylamine-N-oxide has prognostic value in coronary heart disease: a meta-analysis and dose-response analysis[J]. BMC Cardiovasc Disord, 2020, 20(1): 7.
doi: 10.1186/s12872-019-01310-5 |
[31] |
Malik M, Suboc TM, Tyagi S, et al. Lactobacillus plantarum 299v supplementation improves vascular endothelial function and reduces inflammatory biomarkers in men with stable coronary artery disease[J]. Circ Res, 2018, 123(9): 1091-1102.
doi: 10.1161/CIRCRESAHA.118.313565 pmid: 30355158 |
[32] |
Tang TWH, Chen HC, Chen CY, et al. Loss of gut microbiota alters immune system composition and cripples postinfarction cardiac repair[J]. Circulation, 2019, 139(5): 647-659.
doi: 10.1161/CIRCULATIONAHA.118.035235 pmid: 30586712 |
[33] |
Gargiulo P, Marsico F, Renga F, et al. The metabolic syndrome in heart failure: insights to specific mechanisms[J]. Heart Fail Rev, 2020, 25(1): 1-7.
doi: 10.1007/s10741-019-09838-6 pmid: 31414215 |
[34] | Makrecka-Kuka M, Liepinsh E, Murray AJ, et al. Altered mitochondrial metabolism in the insulin-resistant heart[J]. Acta Physiol (Oxf), 2020, 228(3): e13430. |
[35] |
Abel ED. Insulin signaling in the heart[J]. Am J Physiol Endocrinol Metab, 2021, 321(1): E130-E145.
doi: 10.1152/ajpendo.00158.2021 URL |
[36] |
Tunapong W, Apaijai N, Yasom S, et al. Chronic treatment with prebiotics, probiotics and synbiotics attenuated cardiac dysfunction by improving cardiac mitochondrial dysfunction in male obese insulin-resistant rats[J]. Eur J Nutr, 2018, 57(6): 2091-2104.
doi: 10.1007/s00394-017-1482-3 pmid: 28608320 |
[37] |
Lai CH, Tsai CC, Kuo WW, et al. Multi-strain probiotics inhibit cardiac myopathies and autophagy to prevent heart injury in high-fat diet-fed rats[J]. Int J Med Sci, 2016, 13(4): 277-285.
doi: 10.7150/ijms.14769 URL |
[38] |
Chiang CJ, Tsai BC, Lu TL, et al. Diabetes-induced cardiomyopathy is ameliorated by heat-killed lactobacillus reuteri GMNL-263 in diabetic rats via the repression of the toll-like receptor 4 pathway[J]. Eur J Nutr, 2021, 60(6): 3211-3223.
doi: 10.1007/s00394-020-02474-z |
[39] |
Sefidgari-Abrasi S, Roshangar L, Karimi P, et al. From the gut to the heart: L.plantarum and inulin administration as a novel approach to control cardiac apoptosis via 5-HT2B and TrkB receptors in diabetes[J]. Clin Nutr, 2021, 40(1): 190-201.
doi: 10.1016/j.clnu.2020.05.004 pmid: 32446786 |
[40] |
Pugliese NR, Masi S, Taddei S. The renin-angiotensin-aldosterone system: a crossroad from arterial hypertension to heart failure[J]. Heart Fail Rev, 2020, 25(1): 31-42.
doi: 10.1007/s10741-019-09855-5 pmid: 31512149 |
[41] |
Lin PP, Hsieh YM, Kuo WW, et al. Inhibition of cardiac hypertrophy by probiotic-fermented purple sweet potato yogurt in spontaneously hypertensive rat hearts[J]. Int J Mol Med, 2012, 30(6): 1365-1375.
doi: 10.3892/ijmm.2012.1154 URL |
[42] |
Gómez-Guzmán M, Toral M, Romero M, et al. Antihypertensive effects of probiotics Lactobacillus strains in spontaneously hypertensive rats[J]. Mol Nutr Food Res, 2015, 59(11): 2326-2336.
doi: 10.1002/mnfr.201500290 pmid: 26255877 |
[43] |
Silva-Cutini MA, Almeida SA, Nascimento AM, et al. Long-term treatment with kefir probiotics ameliorates cardiac function in spontaneously hypertensive rats[J]. J Nutr Biochem, 2019, 66: 79-85.
doi: S0955-2863(18)31061-1 pmid: 30776608 |
[44] | Robles-Vera I, Toral M, de la Visitación N, et al. Probiotics prevent dysbiosis and the rise in blood pressure in genetic hypertension: role of short-chain fatty acids[J]. Mol Nutr Food Res, 2020, 64(6): e1900616. |
[45] |
Xu J, Moore BN, Pluznick JL. Short-chain fatty acid receptors and blood pressure regulation: council on hypertension mid-career award for research excellence 2021[J]. Hypertension, 2022, 79(10): 2127-2137.
doi: 10.1161/HYPERTENSIONAHA.122.18558 URL |
[46] |
Witkowski M, Weeks TL, Hazen SL. Gut microbiota and cardiovascular disease[J]. Circ Res, 2020, 127(4): 553-570.
doi: 10.1161/CIRCRESAHA.120.316242 pmid: 32762536 |
[47] |
Tang WHW, Li DY, Hazen SL. Dietary metabolism, the gut microbiome, and heart failure[J]. Nat Rev Cardiol, 2019, 16(3): 137-154.
doi: 10.1038/s41569-018-0108-7 pmid: 30410105 |
[48] |
George AK, Singh M, Pushpakumar S, et al. Dysbiotic 1-carbon metabolism in cardiac muscle remodeling[J]. J Cell Physiol, 2020, 235(3): 2590-2598.
doi: 10.1002/jcp.29163 pmid: 31489638 |
[49] |
Morovic W, Budinoff CR. Epigenetics: a new frontier in probiotic research[J]. Trends Microbiol, 2021, 29(2): 117-126.
doi: 10.1016/j.tim.2020.04.008 pmid: 32409146 |
[50] |
Suez J, Zmora N, Segal E, et al. The pros, cons, and many unknowns of probiotics[J]. Nat Med, 2019, 25(5): 716-729.
doi: 10.1038/s41591-019-0439-x pmid: 31061539 |
[1] | LI Yongde, WANG Yang, LI Xiang, LI Wenjie, XIE Di, JIANG Shaowei, GE Xiaoli, WANG Hairong, GAO Chengjin, PAN Shuming. A retrospective study on prediction of neurological outcome in cardiac arrest patients of out-hospital [J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(06): 447-452. |
[2] | ZHANG Ruixin, QU Chunyan, JIANG Jie, TONG Jianjing. Analysis of knowledge depth and breadth of understanding chronic heart failure in general practitioners in Shanghai and influencing factors [J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(06): 457-462. |
[3] | WU Liqun. Greatness in simplicity—new technology of pulmonary vein isolation [J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(05): 357-359. |
[4] | TANG Baopeng, ZHANG Jianghua, GUO Yankai. Progress in clinical application of leadless pacemaker [J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(05): 365-368. |
[5] | YIN Xiang, ZHENG Liangrong. Research progress of percutaneous left atrial appendage occlusion for stroke prevention in atrial fibrillation [J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(05): 392-395. |
[6] | FEI Zhentao, CHEN Mu, LI Yigang. Research progress on mechanism of atrial fibrillation recurrence after catheter ablation [J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(05): 396-399. |
[7] | ZHANG Zhi, TANG Xuechao, HUANG Xinmiao, et al. Application of pulsed electric field ablation in atrial fibrillation [J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(05): 400-404. |
[8] | HU Jian, YANG Zhenkun, YAN Xiaoxiang, NI Jun, DING Fenghua. Clinical effect of subintimal stent implantation in the patients with chronic total occlusion in coronary artery [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(04): 230-233. |
[9] | . [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(03): 212-216. |
[10] | LI Xiang, JIN Qi, PAN Wenqi, JIA Kangni, ZHANG Ning, LIN Changjian, LING Tianyou, CHEN Kang, XIE Yucai, WU Liqun. The learning curve of remote magnetic navigation-guided ablation for idiopathic ventricular arrhythmias [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(03): 167-171. |
[11] | . [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(03): 161-166. |
[12] | . [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(03): 145-150. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||