Journal of Internal Medicine Concepts & Practice ›› 2025, Vol. 20 ›› Issue (04): 328-333.doi: 10.16138/j.1673-6087.2025.04.13
• Review • Previous Articles Next Articles
FAN Yuxin, BIN Zexuan, ZHANG Xin, LUO Jing, WANG Caihong(
)
Received:2024-10-21
Online:2025-07-31
Published:2025-10-27
CLC Number:
FAN Yuxin, BIN Zexuan, ZHANG Xin, LUO Jing, WANG Caihong. Advances in age-associated B cell in systemic lupus erythematosus[J]. Journal of Internal Medicine Concepts & Practice, 2025, 20(04): 328-333.
| [1] |
Dai D, Gu S, Han X, et al. The transcription factor ZEB2 drives the formation of age-associated B cells[J]. Science, 2024, 383(6681):413-421.
doi: 10.1126/science.adf8531 pmid: 38271512 |
| [2] |
Wang S, Wang J, Kumar V, et al. IL-21 drives expansion and plasma cell differentiation of autoreactive CD11chiT-bet+ B cells in SLE[J]. Nat Commun, 2018, 9(1):1758.
doi: 10.1038/s41467-018-03750-7 pmid: 29717110 |
| [3] | Ambegaonkar AA, Holla P, Dizon BL, et al. Atypical B cells in chronic infectious diseases and systemic autoimmunity[J]. Curr Opin Immunol, 2022, 77:102227. |
| [4] | Vinuesa CG, Shen N, Ware T. Genetics of SLE: mechanistic insights from monogenic disease and disease-associated variants[J]. Nat Rev Nephrol, 2023, 19(9):558-572. |
| [5] | Zhang W, Zhang H, Liu S, et al. Excessive CD11c+Tbet+ B cells promote aberrant TFH differentiation and affinity-based germinal center selection in lupus[J]. Proc Natl Acad Sci USA, 2019, 116(37):18550-18560. |
| [6] | Nickerson KM, Smita S, Hoehn KB, et al. Age-associated B cells are heterogeneous and dynamic drivers of autoimmunity in mice[J]. J Exp Med, 2023, 220(5):e20221346. |
| [7] | Atisha-Fregoso Y, Toz B, Diamond B. Meant to B: B cells as a therapeutic target in systemic lupus erythematosus[J]. J Clin Invest, 2021, 131(12):e149095. |
| [8] |
Rubtsov AV, Rubtsova K, Fischer A, et al. Toll-like receptor 7 (TLR7)-driven accumulation of a novel CD11c⁺ B-cell population is important for the development of autoimmunity[J]. Blood, 2011, 118(5):1305-1315.
doi: 10.1182/blood-2011-01-331462 pmid: 21543762 |
| [9] |
Hao Y, O’Neill P, Naradikian MS, et al. A B-cell subset uniquely responsive to innate stimuli accumulates in aged mice[J]. Blood, 2011, 118(5):1294-1304.
doi: 10.1182/blood-2011-01-330530 pmid: 21562046 |
| [10] |
Sachinidis A, Xanthopoulos K, Garyfallos A. Age-associated B cells (ABCs) in the prognosis, diagnosis and therapy of systemic lupus erythematosus (SLE)[J]. Mediterr J Rheumatol, 2020, 31(3):311-318.
doi: 10.31138/mjr.31.3.311 pmid: 33163863 |
| [11] |
Rubtsov AV, Rubtsova K, Kappler JW, et al. TLR7 drives accumulation of ABCs and autoantibody production in autoimmune-prone mice[J]. Immunol Res, 2013, 55(1-3):210-216.
doi: 10.1007/s12026-012-8365-8 pmid: 22945807 |
| [12] |
Naradikian MS, Myles A, Beiting DP, et al. Cutting edge: IL-4, IL-21, and IFN-γ interact to govern T-bet and CD11c expression in TLR-activated B cells[J]. J Immunol, 2016, 197(4):1023-1028.
doi: 10.4049/jimmunol.1600522 pmid: 27430719 |
| [13] |
Mouat IC, Goldberg E, Horwitz MS. Age-associated B cells in autoimmune diseases[J]. Cell Mol Life Sci, 2022, 79(8):402.
doi: 10.1007/s00018-022-04433-9 pmid: 35798993 |
| [14] | Jin W, Luo Z, Yang H. Peripheral B cell subsets in autoimmune diseases: clinical implications and effects of B cell-targeted therapies[J]. J Immunol Res, 2020, 2020:9518137. |
| [15] | Winslow GM, Levack R. Know your ABCs: discovery, differentiation, and targeting of T-bet+ B cells[J]. Immunol Rev, 2025, 330(1):e13440. |
| [16] |
Rubtsov AV, Rubtsova K, Kappler JW, et al. CD11c-expressing B cells are located at the T Cell/B cell border in spleen and are potent APCs[J]. J Immunol, 2015, 195(1):71-79.
doi: 10.4049/jimmunol.1500055 pmid: 26034175 |
| [17] | Gao X, Cockburn IA. The development and function of CD11c+ atypical B cells-insights from single cell analysis[J]. Front Immunol, 2022, 13:979060. |
| [18] |
Ueno H. The IL-12-STAT4 axis in the pathogenesis of human systemic lupus erythematosus[J]. Eur J Immunol, 2020, 50(1):10-16.
doi: 10.1002/eji.201948134 pmid: 31762023 |
| [19] |
Ricker E, Manni M, Flores-Castro D, et al. Altered function and differentiation of age-associated B cells contribute to the female bias in lupus mice[J]. Nat Commun, 2021, 12(1):4813.
doi: 10.1038/s41467-021-25102-8 pmid: 34376664 |
| [20] | von Hofsten S, Fenton KA, Pedersen HL. Human and murine toll-like receptor-driven disease in systemic lupus erythematosus[J]. Int J Mol Sci, 2024, 25(10):5351. |
| [21] | Brown GJ, Cañete PF, Wang H, et al. TLR7 gain-of-function genetic variation causes human lupus[J]. Nature, 2022, 605(7909):349-356. |
| [22] |
Liu Y, Zhou S, Qian J, et al. T-bet+CD11c+ B cells are critical for antichromatin immunoglobulin G production in the development of lupus[J]. Arthritis Res Ther, 2017, 19(1):225.
doi: 10.1186/s13075-017-1438-2 pmid: 28982388 |
| [23] | Manion K, Muñoz-Grajales C, Kim M, et al. Different immunologic profiles are associated with distinct clinical phenotypes in longitudinally observed patients with systemic lupus erythematosus[J]. Arthritis Rheumatol, 2024, 76(5):726-738. |
| [24] | Faustini F, Sippl N, Stålesen R, et al. Rituximab in systemic lupus erythematosus: transient effects on autoimmunity associated lymphocyte phenotypes and implications for immunogenicity[J]. Front Immunol, 2022, 13:826152. |
| [25] | Wu C, Jiang S, Chen Z, et al. Single-cell transcriptomics reveal potent extrafollicular B cell response linked with granzyme K+ CD8 T cell activation in lupus kidney[J]. Ann Rheum Dis, 2024. [Epub ahead of print]. |
| [26] | Zhou S, Li Q, Zhou S, et al. A novel humanized cutaneous lupus erythematosus mouse model mediated by IL-21-induced age-associated B cells[J]. J Autoimmun, 2021, 123:102686. |
| [27] | Poe JC, Fang J, Zhang D, et al. Single-cell landscape analysis unravels molecular programming of the human B cell compartment in chronic GVHD[J]. JCI Insight, 2023, 8(11):e169732. |
| [28] | Caielli S, Wan Z, Pascual V. Systemic lupus erythematosus pathogenesis: Interferon and beyond[J]. Annu Rev Immunol, 2023, 41(1):533-560. |
| [29] | Fillatreau S, Manfroi B, Dörner T. Toll-like receptor signalling in B cells during systemic lupus erythematosus[J]. Nat Rev Rheumatol, 2020, 17(2):98-108. |
| [30] |
Li F, Song B, Zhou WF, et al. Toll-like receptors 7/8: a paradigm for the manipulation of immunologic reactions for immunotherapy[J]. Viral Immunol, 2023, 36(9):564-578.
doi: 10.1089/vim.2023.0077 pmid: 37751284 |
| [31] |
Satterthwaite AB. TLR7 signaling in lupus B cells: new insights into synergizing factors and downstream signals[J]. Curr Rheumatol Rep, 2021, 23(11):80.
doi: 10.1007/s11926-021-01047-1 pmid: 34817709 |
| [32] |
Yu B, Qi Y, Li R, et al. B cell-specific XIST complex enforces X-inactivation and restrains atypical B cells[J]. Cell, 2021, 184(7):1790-1803.
doi: 10.1016/j.cell.2021.02.015 pmid: 33735607 |
| [33] |
Sachinidis A, Lamprinou M, Dimitroulas T, et al. Targeting T-bet expressing B cells for therapeutic interventions in autoimmunity[J]. Clin Exp Immunol, 2024, 217(2):159-166.
doi: 10.1093/cei/uxae036 pmid: 38647337 |
| [34] |
Patel ZH, Lu X, Miller D, et al. A plausibly causal functional lupus-associated risk variant in the STAT1-STAT4 locus[J]. Hum Mol Genet, 2018, 27(13):2392-2404.
doi: 10.1093/hmg/ddy140 pmid: 29912393 |
| [35] | Liu S, Zhang W, Tian S, et al. B cell-intrinsic IFN-γ promotes excessive CD11c+ age-associated B cell differentiation and compromised germinal center selection in lupus mice[J]. Cell Immunol, 2024, 405-406:104833. |
| [36] |
Hagberg N, Joelsson M, Leonard D, et al. The STAT4 SLE risk allele rs7574865[T] is associated with increased IL-12-induced IFN-γ production in T cells from patients with SLE[J]. Ann Rheum Dis, 2018, 77(7):1070-1077.
doi: 10.1136/annrheumdis-2017-212794 pmid: 29475858 |
| [37] | Song W, Sanchez GM, Mayer DP, et al. Cutting edge: IL-21 and tissue-specific signals instruct tbet+CD11c+ B cell development following viral infection[J]. J Immunol, 2023, 210(12):1861-1865. |
| [38] | Gao X, Shen Q, Roco JA, et al. Zeb2 drives the formation of CD11c+ atypical B cells to sustain germinal centers that control persistent infection[J]. Sci Immunol, 2024, 9(93):eadj4748. |
| [39] |
Liu X, Li C, Wang Y, et al. ZEB2 drives the differentiation of age-associated B cell in autoimmune diseases[J]. Sci Bull, 2024, 69(10):1362-1364.
doi: 10.1016/j.scib.2024.03.041 pmid: 38594098 |
| [40] | Wei X, Niu X. T follicular helper cells in autoimmune diseases[J]. J Autoimmun, 2023, 134:102976. |
| [41] | Jin X, Chen J, Wu J, et al. Aberrant expansion of follicular helper T cell subsets in patients with systemic lupus erythematosus[J]. Front Immunol, 2022, 13:928359. |
| [42] | Ramirez De Oleo I, Kim V, Atisha-Fregoso Y, et al. Phenotypic and functional characteristics of murine CD11c+ B cells which is suppressed by metformin[J]. Front Immunol, 2023, 14:1241531. |
| [43] | Song W, Antao OQ, Condiff E, et al. Development of Tbet- and CD11c-expressing B cells in a viral infection requires T follicular helper cells outside of germinal centers[J]. Immunity, 2022, 55(2):290-307. |
| [1] | CHEN Xue, SUN Mingfang, DAI Huanzi. A case of neuropsychiatric lupus successfully treated with sequential therapy of rituximab and belimumab therapy [J]. Journal of Internal Medicine Concepts & Practice, 2025, 20(04): 316-318. |
| [2] | CEN Xing, ZHAO Chunmiao, BU Yujie, ZHAO Guifang, YANG Jinhua, CHEN Junwei. Investigating correlation between gut microbiota and peripheral lymphocyte subsets in patients with systemic lupus erythematosus [J]. Journal of Internal Medicine Concepts & Practice, 2025, 20(02): 140-145. |
| [3] | YANG Yifan, ZHANG Guofang, XU Jian. Application of multimodal magnetic resonance in identification of early brain damage in systemic lupus erythematosus [J]. Journal of Internal Medicine Concepts & Practice, 2024, 19(06): 372-378. |
| [4] | CHEN Jia, ZHAO Futao, SUN Jianfang. Role of dermatopathology in diagnosis of rheumatic diseases [J]. Journal of Internal Medicine Concepts & Practice, 2024, 19(06): 367-371. |
| [5] | SU Chuanxin, ZHU Zhenhang, WANG Wang, LIANG Rongzhen, ZHENG Songguo, ZHAO Futao. Application of mesenchymal stem cells in systemic rheumatic diseases: current situation and prospects [J]. Journal of Internal Medicine Concepts & Practice, 2024, 19(06): 422-426. |
| [6] | LIU Yanming, SUN Shuyu, LI Song, WU Jian. A case of systemic lupus erythematosus complicated with calcinosis cutis [J]. Journal of Internal Medicine Concepts & Practice, 2024, 19(06): 409-412. |
| [7] | WANG Yiyang, LÜ Liangjing. Potential biomarkers for prediction of the efficacy and safety of CAR T cell treatment in systemic lupus erythematosus [J]. Journal of Diagnostics Concepts & Practice, 2024, 23(03): 263-269. |
| [8] | ZHANG Xin, ZHAO Shengnan, FENG Xuebing. Current status and challenges in diagnosis and treatment of systemic lupus erythematosus in China [J]. Journal of Diagnostics Concepts & Practice, 2024, 23(03): 257-262. |
| [9] | GE Jianhua, GONG Wen, SHI Xinming, GONG Huiyun, MA Longxin, ZHOU Jinfeng, SHI Hui. Value of combining ELISA and CLIFT in detection of anti-dsDNA IgG antibody for diagnosis of systemic lupus erythematosis [J]. Journal of Diagnostics Concepts & Practice, 2018, 17(06): 658-663. |
| [10] | . [J]. Journal of Diagnostics Concepts & Practice, 2015, 14(06): 545-548. |
| [11] | . [J]. Journal of Diagnostics Concepts & Practice, 2015, 14(06): 528-532. |
| [12] | . [J]. Journal of Diagnostics Concepts & Practice, 2015, 14(03): 229-234. |
| [13] | . [J]. Journal of Diagnostics Concepts & Practice, 2014, 13(03): 246-250. |
| [14] | . [J]. Journal of Diagnostics Concepts & Practice, 2014, 13(03): 255-259. |
| [15] | . [J]. Journal of Diagnostics Concepts & Practice, 2012, 11(04): 397-400. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||