Journal of Internal Medicine Concepts & Practice ›› 2025, Vol. 20 ›› Issue (02): 132-139.doi: 10.16138/j.1673-6087.2025.02.06
• Original article • Previous Articles Next Articles
ZHANG Xiaoyana, XU Jingb, QU Binc()
Received:
2024-03-18
Online:
2025-04-28
Published:
2025-07-08
Contact:
QU Bin
E-mail:qb3793@163.com
CLC Number:
ZHANG Xiaoyan, XU Jing, QU Bin. Predictive effect of estimated glomerular filtration rate on clinical prognosis of elderly hospitalized patients[J]. Journal of Internal Medicine Concepts & Practice, 2025, 20(02): 132-139.
Table 1
Commonly used formulas for estimating glomerular filtration rate based on blood creatinine or cystatin C
公式名称 | eGFR计算公式 |
---|---|
CKD-EPICr公式(2021)[ | |
SCr≤0.7 mg/dL(女性) | 144×(SCr/0.7)-0.241×0.993 8年龄 |
SCr>0.7 mg/dL(女性) | 144×(SCr/0.7)-1.200×0.993 8年龄 |
SCr≤0.9 mg/dL(男性) | 142×(SCr/0.9)-0.302×0.993 8年龄 |
SCr>0.9 mg/dL(男性) | 142×(SCr/0.9)-1.200×0.993 8年龄 |
CKD-EPICys公式(2012)[ | |
SCr≤0.8 mg/dL(女性) | 124×(CysC/0.8)-0.499×0.996 2年龄 |
SCr>0.8 mg/dL(女性) | 124×(CysC/0.8)-1.328×0.996 2年龄 |
SCr≤0.8 mg/dL(男性) | 133×(CysC/0.8)-0.499×0.996 2年龄 |
SCr>0.8 mg/dL(男性) | 133×(CysC/0.8)-1.328×0.996 2年龄 |
CKD-EPICr-Cys公式(2021)[ | |
SCr≤0.7 mg/dL,CysC≤0.8 mg/L(女性) | 130×(SCr/0.7)-0.219×(CysC/0.8)-0.323×0.996 1年龄 |
SCr≤0.7 mg/dL,CysC>0.8 mg/L(女性) | 130×(SCr/0.7)-0.219×(CysC/0.8)-0.778×0.996 1年龄 |
SCr>0.7 mg/dL,CysC≤0.8 mg/L(女性) | 130×(SCr/0.7)-0.544×(CysC/0.8)-0.323×0.996 1年龄 |
SCr>0.7 mg/dL,CysC>0.8 mg/L(女性) | 130×(SCr/0.7)-0.544×(CysC/0.8)-0.778×0.996 1年龄 |
SCr≤0.9 mg/dL,CysC≤0.8 mg/L(男性) | 135×(SCr/0.9)-0.144×(CysC/0.8)-0.323×0.996 1年龄 |
SCr≤0.9 mg/dL,CysC>0.8 mg/L(男性) | 135×(SCr/0.9)-0.144×(CysC/0.8)-0.778×0.996 1年龄 |
SCr>0.9 mg/dL,CysC≤0.8 mg/L(男性) | 135×(SCr/0.9)-0.544×(CysC/0.8)-0.323×0.996 1年龄 |
SCr>0.9 mg/dL,CysC>0.8 mg/L(男性) | 135×(SCr/0.9)-0.544×(CysC/0.8)-0.778×0.996 1年龄 |
BIS2公式[ | |
男性 | 767×CysC-0.61×SCr-0.40×年龄-0.57 |
女性 | 767×CysC-0.61×SCr-0.40×年龄-0.57×0.87 |
Table 2
Baseline and follow-up characteristics of the participants[$\bar{x}±s$/n(%)/M(IQR)]
项目 | 检测结果 |
---|---|
BMI(kg/m2) | 23.9±3.4 |
收缩压(mmHg) | 140.2±19.5 |
舒张压(mmHg) | 73.0±10.4 |
血红蛋白(g/L) | 128.5±16.1 |
白蛋白(g/L) | 37.0(34.0,40.0) |
UACR<30 mg/g [n(%)] | 377(79.4) |
UACR 30~300 mg/g [n(%)] | 75(15.8) |
UACR≥300 mg/g [n(%)] | 23(4.8) |
尿素氮(mmol/L) | 5.8(4.8,7.1) |
血Cr(μmol/L) | 81.0(69.0,95.0) |
CysC(mg/L) | 1.2(1.0,1.4) |
尿酸(μmol/L) | 331.7±89.0 |
eGFR[mL/(min·1.73m2)] | |
CKD-EPICr | 76.3(62.1,87.3) |
CKD-EPICys | 56.7±17.9 |
CKD-EPICr-Cys | 67.3±17.6 |
BIS2公式 | 56.3±13.5 |
甘油三酯(mmol/L) | 1.1(0.8,1.5) |
胆固醇(mmol/L) | 4.3±1.0 |
低密度脂蛋白(mmol/L) | 2.4(1.9,2.9) |
空腹血糖(mmol/L) | 5.3(4.9,5.9) |
糖化血红蛋白(%) | 5.8(5.5,6.2) |
Table 3
Univariate and multivariate Logistic regression analyses of eGFR, UACR and endpoint events
公式 | 死亡 | 心脑血管事件 | 肾脏终点事件 | 复合事件 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OR | 95%CI | P | OR | 95%CI | P | OR | 95%CI | P | OR | 95%CI | P | ||||
CKD-EPICr | |||||||||||||||
未校正 | 1.57 | 0.94~2.64 | 0.087 | 1.87 | 1.06~3.28 | 0.030 | 2.19 | 0.97~4.93 | 0.060 | 1.90 | 1.21~2.98 | 0.005 | |||
模型1 | 1.32 | 0.76~2.28 | 0.325 | 1.68 | 0.95~2.99 | 0.076 | 2.04 | 0.89~4.66 | 0.093 | 1.69 | 1.05~2.73 | 0.030 | |||
模型2 | 1.32 | 0.76~2.31 | 0.329 | 1.53 | 0.85~2.75 | 0.157 | 2.03 | 0.87~4.72 | 0.101 | 1.60 | 0.98~2.60 | 0.058 | |||
模型3 | 1.12 | 0.58~2.14 | 0.740 | 1.39 | 0.70~2.79 | 0.348 | 1.06 | 0.39~2.88 | 0.902 | 1.34 | 0.77~2.31 | 0.301 | |||
CKD-EPICys | |||||||||||||||
未校正 | 1.95 | 1.18~3.20 | 0.009 | 2.36 | 1.32~4.22 | 0.004 | 1.43 | 0.63~3.26 | 0.391 | 2.15 | 1.41~3.27 | <0.001 | |||
模型1 | 1.29 | 0.75~2.20 | 0.360 | 1.92 | 1.05~3.52 | 0.036 | 1.15 | 0.48~2.72 | 0.758 | 1.59 | 1.01~2.50 | 0.044 | |||
模型2 | 1.31 | 0.76~2.27 | 0.333 | 1.72 | 0.93~3.20 | 0.085 | 1.19 | 0.49~2.87 | 0.699 | 1.53 | 0.97~2.43 | 0.071 | |||
模型3 | 1.13 | 0.63~2.03 | 0.677 | 1.59 | 0.82~3.09 | 0.174 | 0.62 | 0.23~1.65 | 0.621 | 1.29 | 0.78~2.11 | 0.319 | |||
CKD-EPICr~Cys | |||||||||||||||
未校正 | 1.73 | 1.09~2.76 | 0.020 | 1.87 | 1.11~3.13 | 0.018 | 3.09 | 1.38~6.91 | 0.006 | 1.84 | 1.23~2.74 | 0.003 | |||
模型1 | 1.15 | 0.69~1.90 | 0.594 | 1.50 | 0.87~2.58 | 0.145 | 2.67 | 1.15~6.19 | 0.022 | 1.34 | 0.87~2.06 | 0.187 | |||
模型2 | 1.15 | 0.69~1.92 | 0.584 | 1.49 | 0.81~2.44 | 0.230 | 2.8 | 1.14~6.37 | 0.023 | 1.30 | 0.84~2.02 | 0.245 | |||
模型3 | 0.91 | 0.50~1.65 | 0.911 | 1.06 | 0.55~2.04 | 0.866 | 1.58 | 0.60~4.19 | 0.355 | 0.95 | 0.57~1.59 | 0.836 | |||
BIS2 | |||||||||||||||
未校正 | 2.14 | 1.26~3.64 | 0.005 | 3.05 | 1.59~5.88 | 0.001 | 2.08 | 0.82~5.26 | 0.122 | 2.28 | 1.46~3.54 | <0.001 | |||
模型1 | 1.38 | 0.78~2.46 | 0.271 | 2.52 | 1.27~4.98 | 0.008 | 1.75 | 0.66~4.63 | 0.260 | 1.68 | 1.04~2.70 | 0.034 | |||
模型2 | 1.41 | 0.78~2.55 | 0.254 | 2.09 | 1.04~4.21 | 0.038 | 1.82 | 0.67~4.98 | 0.244 | 1.57 | 0.96~2.57 | 0.070 | |||
模型3 | 1.14 | 0.61~2.15 | 0.677 | 2.00 | 0.95~4.20 | 0.067 | 0.99 | 0.34~2.94 | 0.990 | 1.32 | 0.78~2.24 | 0.302 | |||
UACR | |||||||||||||||
未校正 | 2.33 | 1.40~3.88 | 0.001 | 3.94 | 2.28~6.79 | <0.001 | 2.85 | 1.28~6.37 | 0.010 | 3.61 | 2.27~5.72 | <0.001 | |||
模型1 | 2.01 | 1.17~3.44 | 0.011 | 3.60 | 2.07~6.27 | <0.001 | 2.55 | 1.13~5.74 | 0.024 | 3.33 | 2.05~5.41 | <0.001 | |||
模型2 | 2.11 | 1.21~3.67 | 0.008 | 3.34 | 1.88~5.91 | <0.001 | 2.53 | 1.09~5.85 | 0.031 | 3.34 | 2.03~5.51 | <0.001 | |||
模型4 | 1.85 | 1.05~3.27 | 0.033 | 3.28 | 1.83~5.86 | <0.001 | 2.01 | 0.85~4.74 | 0.113 | 3.15 | 1.90~5.24 | <0.001 |
[1] | Zsom L, Zsom M, Salim SA, et al. Estimated glomerular filtration rate in chronic kidney disease: a aritical review of estimate-based predictions of individual outcomes in kidney disease[J]. Toxins (Basel), 2022, 14(2): 127. |
[2] |
Fu EL, Carrero JJ, Sang Y, et al. Association of low glomerular filtration rate with adverse outcomes at older age in a large population with routinely measured Cystatin C[J]. Ann Intern Med, 2024, 177(3): 269-279.
doi: 10.7326/M23-1138 pmid: 38285982 |
[3] | Inker LA, Eneanya ND, Coresh J, et al. New creatinine- and cystatin C-based equations to estimate GFR without race[J]. N Engl J Med, 2021, 385(19): 1737-1749. |
[4] | Inker LA, Schmid CH, Tighiouart H, et al. Estimating glomerular filtration rate from serum creatinine and cystatin C[J]. N Engl J Med, 2012, 367(1): 20-29. |
[5] |
Schaeffner ES, Ebert N, Delanaye P, et al. Two novel equations to estimate kidney function in persons aged 70 years or older[J]. Ann Intern Med, 2012, 157(7):471-481.
doi: 10.7326/0003-4819-157-7-201210020-00003 pmid: 23027318 |
[6] |
Wang L, Xu X, Zhang M, et al. Prevalence of chronic kidney disease in China: results from the sixth China chronic disease and risk factor surveillance[J]. JAMA Intern Med, 2023, 183(4): 298-310.
doi: 10.1001/jamainternmed.2022.6817 pmid: 36804760 |
[7] | 高琛妮, 段育华, 贾亮琴, 等. 1200名白族成年人体检单次尿液和肾功能检查结果分析及临床意义[J]. 内科理论与实践, 2021, 16(1): 18-21. |
[8] |
Grams ME, Brunskill NJ, Ballew SH, et al. The kidney failure risk equation: evaluation of novel input variables including eGFR estimated using the CKD-EPI 2021 equation in 59 cohorts[J]. J Am Soc Nephrol, 2023, 34(3): 482-494.
doi: 10.1681/ASN.0000000000000050 pmid: 36857500 |
[9] |
Pierpaoli E, Fabi K, Lenci FF, et al. Kidney function and cognitive impairment among older hospitalized patients: a comparison of four glomerular filtration rate equations[J]. Aging Clin Exp Res, 2020, 32(5): 841-850.
doi: 10.1007/s40520-019-01405-1 pmid: 31732959 |
[10] | Xin G, Li Q, Sheng C, et al. Comparation of two cystatin C-based eGFR equations in assessing risk of all-cause mortality and incident cardiovascular disease[J]. Nutr Metab (Lond), 2024, 21(1): 94. |
[11] |
Fu EL, Levey AS, Coresh J, et al. Accuracy of GFR estimating equations in patients with discordances between Creatinine and Cystatin C-based estimations[J]. J Am Soc Nephrol, 2023, 34(7): 1241-1251.
doi: 10.1681/ASN.0000000000000128 pmid: 36995139 |
[12] |
Zhu C, Zhang H, Shen Z, et al. Cystatin C-based estimated GFR performs best in identifying individuals with poorer survival in an unselected Chinese population: results from the China Health and Retirement Longitudinal Study (CHARLS)[J]. Clin Kidney J, 2022, 15(7): 1322-1332.
doi: 10.1093/ckj/sfac070 pmid: 35756734 |
[13] | Ma Y, Shen X, Yong Z, et al. Comparison of glomerular filtration rate estimating equations in older adults: a systematic review and meta-analysis[J]. Arch Gerontol Geriatr, 2023, 114: 105107. |
[14] | Beridze G, Vetrano DL, Marengoni A, et al. Concordance and disCrepancies among 5 Creatinine-based equations for assessing estimated glomerular filtration rate in older adults[J]. JAMA Netw Open, 2023, 6(3): e234211. |
[15] |
Writing Group for the CKD Prognosis Consortium. Estimated glomerular filtration rate, albuminuria, and adverse outcomes: an individual-participant data meta-analysis[J]. JAMA, 2023, 330(13): 1266-1277.
doi: 10.1001/jama.2023.17002 pmid: 37787795 |
[16] |
Kühn A, van der Giet M, Kuhlmann MK, et al. Kidney function as risk factor and predictor of cardiovascular outcomes and mortality among older adults[J]. Am J Kidney Dis, 2021, 77(3): 386-396.
doi: 10.1053/j.ajkd.2020.09.015 pmid: 33197533 |
[17] |
O’Hare AM, Bertenthal D, Covinsky KE, et al. Mortality risk stratification in chronic kidney disease: one size for all ages?[J]. J Am Soc Nephrol, 2006, 17(3): 846-853.
doi: 10.1681/ASN.2005090986 pmid: 16452492 |
[18] | Malmgren L, McGuigan FE, Berglundh S, et al. Declining estimated glomerular filtration rate and its association with mortality and comorbidity over 10 years in elderly women[J]. Nephron, 2015, 130(4): 245-255. |
[19] | Shan Y, Zhang J, Lu Y, et al. Kidney function measures and mortality: a Mendelian randomization study[J]. Am J Kidney Dis, 2024, 83(6): 772-783. |
[20] |
Díez-Villanueva P, Jiménez-Méndez C, Pérez-Rivera Á, et al. Different impact of chronic kidney disease in older patients with heart failure according to frailty[J]. Eur J Intern Med, 2025, 132: 90-96.
doi: 10.1016/j.ejim.2024.12.001 pmid: 39648049 |
[21] |
Chowdhury EK, Langham RG, Owen A, et al. Comparison of predictive performance of renal function estimation equations for all-cause and cardiovascular mortality in an elderly hypertensive population[J]. Am J Hypertens, 2015, 28(3): 380-386.
doi: 10.1093/ajh/hpu160 pmid: 25239479 |
[22] | Shardlow A, McIntyre NJ, Fluck RJ, et al. Chronic kidney disease in primary care: outcomes after five years in a prospective cohort study[J]. PLoS Med, 2016, 13(9):e1002128. |
[23] |
Gigante A, Hoffmann-Vold AM, Alunni Fegatelli D, et al. Estimated glomerular filtration rate is a marker of mortality in the European Scleroderma Trials and Research Group (EUSTAR) database[J]. Rheumatology (Oxford), 2021, 61(1): 213-222.
doi: 10.1093/rheumatology/keab302 pmid: 33769468 |
[24] | Yang L, Wu ZJ, Weng H, et al. The prognostic value of estimated glomerular filtration rate change in elderly patients undergoing valvular replacement surgery[J]. Arch Gerontol Geriatr, 2025, 130: 105719. |
[25] |
Peralta CA, Katz R, Sarnak MJ, et al. Cystatin C identifies chronic kidney disease patients at higher risk for complications[J]. J Am Soc Nephrol, 2011, 22(1): 147-155.
doi: 10.1681/ASN.2010050483 pmid: 21164029 |
[26] | Lees JS, Rutherford E, Stevens KI, et al. Assessment of cystatin C level for risk stratification in adults with chronic kidney disease[J]. JAMA Netw Open, 2022, 5(10):e2238300. |
[27] |
Tarantini L, McAlister FA, Barbati G, et al. Chronic kidney disease and prognosis in elderly patients with cardiovascular disease: comparison between CKD-EPI and Berlin Initiative Study-1 formulas[J]. Eur J Prev Cardiol, 2016, 23(14): 1504-1513.
doi: 10.1177/2047487316638454 pmid: 26988974 |
[28] |
Van Pottelbergh G, Vaes B, Adriaensen W, et al. The glomerular filtration rate estimated by new and old equations as a predictor of important outcomes in elderly patients[J]. BMC Med, 2014, 12: 27.
doi: 10.1186/1741-7015-12-27 pmid: 24517214 |
[29] |
Emrich IE, Pickering JW, Schöttker B, et al. Comparison of the performance of 2 GFR estimating equations using creatinine and cystatin C to predict adverse outcomes in elderly individuals[J]. Am J Kidney Dis, 2015, 65(4):636-638.
doi: 10.1053/j.ajkd.2014.12.006 pmid: 25620662 |
[30] | Safdar A, Akram W, Ahmad Khan M, et al. Optimal glomerular filtration rate equations for various age groups, disease conditions and ethnicities in Asia: a systematic review[J]. J Clin Med, 2023, 12(5): 1822. |
[31] |
Yang Y, Jiao YY, Zhang Z, et al. Optimal assessment of the glomerular filtration rate in older chinese patients using the equations of the Berlin Initiative Study[J]. Aging Clin Exp Res, 2024, 36(1): 17.
doi: 10.1007/s40520-023-02657-8 pmid: 38294586 |
[32] |
Aguilar MI, O’Meara ES, Seliger S, et al. Albuminuria and the risk of incident stroke and stroke types in older adults[J]. Neurology, 2010, 75(15): 1343-1350.
doi: 10.1212/WNL.0b013e3181f73638 pmid: 20810996 |
[33] | Matsushita K, Coresh J, Sang Y, et al. Estimated glomerular filtration rate and albuminuria for prediction of cardiovascular outcomes: a collaborative meta-analysis of individual participant data[J]. Lancet Diabetes EndoCrinol, 2015, 3(7): 514-525. |
[34] |
Jonsson AJ, Lund SH, Eriksen BO, et al. The prevalence of chronic kidney disease in Iceland according to KDIGO criteria and age-adapted estimated glomerular filtration rate thresholds[J]. Kidney Int, 2020, 98(5): 1286-1295.
doi: 10.1016/j.kint.2020.06.017 pmid: 32622831 |
[35] |
Glassock RJ, Delanaye P, Rule AD. Should the definition of CKD be changed to include age-adapted GFR criteria? YES[J]. Kidney Int, 2020, 97(1): 34-37.
doi: S0085-2538(19)30976-7 pmid: 31901354 |
[36] |
Rovin BH. Do kidneys grow old gracefully?[J]. Kidney Int, 2020, 97(1): 40-41.
doi: S0085-2538(19)30974-3 pmid: 31901356 |
[1] | XIE Xiaomeng, GONG Yanchun. Research progress of postprandial hypotension and its relationship with cardiovascular and cerebrovascular damage in the elderly [J]. Journal of Internal Medicine Concepts & Practice, 2024, 19(05): 342-346. |
[2] | XIE Yaqiong, LIN Xiaoyi. Value of serum-free light chain assay in differential diagnosis and staging of nephropathy of various etiologies [J]. Journal of Diagnostics Concepts & Practice, 2023, 22(02): 166-171. |
[3] | LIU Anping, LING Feng, SHI Chao, SUN Jing. Analysis of fall risk factors and establishment of risk identification model in elderly stroke patients in Shanghai community [J]. Journal of Diagnostics Concepts & Practice, 2021, 20(05): 475-479. |
[4] | FENG Mingyang, DING Yezhou, ZHAO Qingqing, ZHAO Gangde, LOU Shike, ZHENG Chao, SUN Xuehua, LIU Kehui, LIN Lanyi, XIE Qing, ZHENG Lan, WANG HUI. Relation of TCM syndrome type in traditional Chinese medicine with liver failure staging in Western medicine in patients with liver failure [J]. Journal of Diagnostics Concepts & Practice, 2021, 20(04): 391-395. |
[5] | WU Jie, FENG Yuanyuan, REN Yan, CAO Jiumei. Survey of risk factors of coronary heart disease in elderly patients with coronary angiography and establishment of relevant diagnostic model [J]. Journal of Diagnostics Concepts & Practice, 2021, 20(02): 201-206. |
[6] | GAO Chenni, DUAN Yuhua, JIA Liangqin, CHEN Xiaonong. The result analysis and clinical significance of single urine test and renal function examination in 1 200 adults of the Bai ethnic group [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(01): 18-21. |
[7] | LIU Shengjun, LIU Lili, ZHU Zhengbin, SUN Yi, ZHU Tianqi, FENG Shuo, CHEN Xin, QUAN Weiwei, ZHANG Ruiyan. Correlation of estimated glomerular filtration rate with incidence of in-stent restenosis in patients with drug-elu-ting stent [J]. Journal of Diagnostics Concepts & Practice, 2020, 19(03): 297-302. |
[8] | . [J]. Journal of Internal Medicine Concepts & Practice, 2020, 15(01): 45-48. |
[9] | WU Lin, ZHENG Ge, TAO Ting. Angiotensin-converting enzyme gene insertion/deletion polymorphism and decline of renal function in elderly [J]. Journal of Diagnostics Concepts & Practice, 2019, 18(2): 204-208. |
[10] | . [J]. Journal of Internal Medicine Concepts & Practice, 2019, 14(06): 337-341. |
[11] | . [J]. Journal of Internal Medicine Concepts & Practice, 2019, 14(03): 172-177. |
[12] | SUN Wenwu, QI Mengzhi, MAO Enqiang. Effect of early and controlling fluid resuscitation on prognosis of severe acute pancreatitis [J]. Journal of Surgery Concepts & Practice, 2018, 23(01): 37-40. |
[13] | ZHOU Yan, GU Yi. Study on correlation between serum vitamin D and severity of community-acquired pneumonia in elderly people [J]. Journal of Diagnostics Concepts & Practice, 2017, 16(06): 612-616. |
[14] | WANG Linlin, ZHU Chengcheng, ZHANG Qingwu, CHEN Ting, WU Shun. Diagnostic value of serum procalcitonin, IL-6 and C-reactive protein for community acquired pneumonia in elderly patients [J]. Journal of Diagnostics Concepts & Practice, 2017, 16(05): 532-536. |
[15] | . [J]. Journal of Surgery Concepts & Practice, 2015, 20(05): 399-402. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||