外科理论与实践 ›› 2020, Vol. 25 ›› Issue (03): 227-233.doi: 10.16139/j.1007-9610.2020.03.011
高航, 赵峰, 吴衍, 裴文江, 钟明, 顾岩, 郭善禹, 戴谦诚, 张伟()
收稿日期:
2019-11-04
出版日期:
2020-05-25
发布日期:
2020-05-25
通讯作者:
张伟
E-mail:weizh1518@hotmail.com
基金资助:
GAO Hang, ZHAO Feng, WU Yan, PEI Wenjiang, ZHONG Ming, GU Yan, GUO Shanyu, DAI Qiancheng, ZHANG Wei()
Received:
2019-11-04
Online:
2020-05-25
Published:
2020-05-25
摘要:
目的:探讨微小RNA-9-5p(miR-9-5p)调控肿瘤高甲基化基因1(hypermethylated in cancer 1, HIC1)对乳腺癌MDA-MB-231细胞对化疗药多柔比星敏感性的影响及其作用机制。方法:①使用慢病毒转染建立上调或下调miR-9-5p细胞,加入不同浓度多柔比星后,用CCK-8和流式细胞仪检测细胞活力和凋亡情况。②通过反转录-聚合酶链反应(reverse transcription-polymerase chain reaction,RT-PCR)和蛋白质印迹试验检测上调或下调miR-9-5p时HIC1的表达情况。通过数据库资料、双荧光素酶报告基因系统验证miR-9-5p与HIC1的关系。③下调HIC1,观察加入多柔比星后细胞活力和凋亡情况。结果:①上调miR-9-5p可提高细胞活力、抑制凋亡。下调miR-9-5p可降低细胞活力、促进凋亡。②miR-9-5p靶向HIC1,两者的表达呈负相关。③抑制HIC1的表达,可逆转miR-9-5p下调的作用。结论:miR-9-5p可通过下调HIC1降低乳腺癌细胞对多柔比星的敏感性。
中图分类号:
高航, 赵峰, 吴衍, 裴文江, 钟明, 顾岩, 郭善禹, 戴谦诚, 张伟. 微小RNA-9-5p靶向HIC1降低乳腺癌细胞对多柔比星敏感性的研究[J]. 外科理论与实践, 2020, 25(03): 227-233.
GAO Hang, ZHAO Feng, WU Yan, PEI Wenjiang, ZHONG Ming, GU Yan, GUO Shanyu, DAI Qiancheng, ZHANG Wei. Study on microRNA-9-5p reducing sensitivity of breast cancer cells to doxorubicin through targeting HIC1[J]. Journal of Surgery Concepts & Practice, 2020, 25(03): 227-233.
[1] |
Adachi Y, Yoshimura M, Nishida K, et al. Acute phase dynamics of circulating tumor cells after paclitaxel and doxorubicin chemotherapy in breast cancer mouse models[J]. Breast Cancer Res Treat, 2018, 167(2):439-450.
doi: 10.1007/s10549-017-4532-x URL |
[2] |
Zhang Y, Xia F, Zhang F, et al. miR-135b-5p enhances doxorubicin-sensitivity of breast cancer cells through targeting anterior gradient 2[J]. J Exp Clin Cancer Res, 2019, 38(1):26.
doi: 10.1186/s13046-019-1024-3 URL |
[3] |
Chewchuk S, Guo B, Parissenti AM. Alterations in estrogen signaling pathways upon acquisition of anthracycline resistance in breast tumor cells[J]. PLoS One, 2017, 12(2):e0172244.
doi: 10.1371/journal.pone.0172244 URL |
[4] |
Liu DZ, Chang B, Li XD, et al. MicroRNA-9 promotes the proliferation, migration, and invasion of breast cancer cells via down-regulating FOXO1[J]. Clin Transl Oncol, 2017, 19(9):1133-1140.
doi: 10.1007/s12094-017-1650-1 pmid: 28397066 |
[5] |
Zhao F, Pan S, Gu Y, et al. Reactivation of HIC1 gene by saRNA inhibits clonogenicity and invasiveness in breast cancer cells[J]. Oncol lett, 2015, 9(1):159-164.
doi: 10.3892/ol.2014.2633 URL |
[6] |
Feng F, Zhu X, Wang C, et al. Downregulation of hypermethylated in cancer-1 by miR-4532 promotes adria-mycin resistance in breast cancer cells[J]. Cancer Cell Int, 2018, 18:127.
doi: 10.1186/s12935-018-0616-x pmid: 30202238 |
[7] |
Rivankar S. An overview of doxorubicin formulations in cancer therapy[J]. J Cancer Res and Ther, 2014, 10(4):853-858.
doi: 10.4103/0973-1482.139267 URL |
[8] | Wang S, Oh DY, Leventaki V, et al. MicroRNA-17 acts as a tumor chemosensitizer by targeting JAB1/CSN5 in triple-negative breast cancer[J]. Cancer Lett, 2019,465:12-23. |
[9] |
Lin H, Gregory JH. MicroRNAs: small RNAs with a big role in gene regulation[J]. Nat Rev Genet, 2004, 5(7):522-531.
doi: 10.1038/nrg1379 pmid: 15211354 |
[10] |
Dong H, Lei J, Ding L, et al. MicroRNA: function, detection, and bioanalysis[J]. Chem Rev, 2013, 113(8):6207-6233.
doi: 10.1021/cr300362f URL |
[11] |
Piasecka D, Braun M, Kordek R, et al. MicroRNAs in regulation of triple-negative breast cancer progression[J]. J Cancer Res Clin Oncol, 2018, 144(8):1401-1411.
doi: 10.1007/s00432-018-2689-2 URL |
[12] |
Gulyaeva LF, Kushlinskiy NE. Regulatory mechanisms of microRNA expression[J]. J Transl Med, 2016, 14(1):143.
doi: 10.1186/s12967-016-0893-x URL |
[13] |
Rivera-Barahona A, Pérez B, Richard E, et al. Role of miRNAs in human disease and inborn errors of metabolism[J]. J Inherit Metab Dis, 2017, 40(4):471-480.
doi: 10.1007/s10545-017-0018-6 pmid: 28229250 |
[14] |
Madelaine R, Sloan SA, Huber N, et al. MicroRNA-9 couples brain neurogenesis and angiogenesis[J]. Cell Rep, 2017, 20(7):1533-1542.
doi: S2211-1247(17)31030-6 pmid: 28813666 |
[15] |
Li G, Wu F, Yang H, et al. MiR-9-5p promotes cell growth and metastasis in non-small cell lung cancer through the repression of TGFBR2[J]. Biomed Pharmacother, 2017, 96:1170-1178.
doi: 10.1016/j.biopha.2017.11.105 URL |
[16] |
Sondermann A, Andreghetto FM, Moulatlet AC, et al. MiR-9 and miR-21 as prognostic biomarkers for recurrence in papillary thyroid cancer[J]. Clin Exp Metastasis, 2015, 32(6):521-530.
doi: 10.1007/s10585-015-9724-3 URL |
[17] |
Yi J, Gao ZF. MicroRNA-9-5p promotes angiogenesis but inhibits apoptosis and inflammation of high glucose-induced injury in human umbilical vascular endothelial cells by targeting CXCR4[J]. Int J Biol Macromol, 2019, 130:1-9.
doi: 10.1016/j.ijbiomac.2019.02.003 URL |
[18] | Zhang H, Zhang Z, Wang S, et al. The mechanisms involved in miR-9 regulated apoptosis in cervical cancer by targeting FOXO3[J]. Biomed Pharmacother, 2018,102:626-632. |
[19] |
Wang H, Zhang W, Zuo Y, et al. miR-9 promotes cell proliferation and inhibits apoptosis by targeting LASS2 in bladder cancer[J]. Tumour Biol, 2015, 36(12):9631-9640.
doi: 10.1007/s13277-015-3713-7 URL |
[20] | Polley E, Kunkei M, Evans D, et al. Small cell lung cancer screen of oncology drugs, investigational agents, and gene and microRNA expression[J]. J Natl Cancer Inst, 2016, 108(10) |
[21] |
Barbano R, Pasculli B, Rendina M, et al. Stepwise analysis of MIR9 loci identifies miR-9-5p to be involved in Oestrogen regulated pathways in breast cancer patients[J]. Sci Rep, 2017, 7:45283.
doi: 10.1038/srep45283 URL |
[22] |
Wales MM, Biel MA, Deiry WE, et al. p53 activates expression of HIC-1, a new candidate tumour suppressor gene on 17p13.3[J]. Nat Med, 1995, 1(6):570-577.
pmid: 7585125 |
[23] |
Szczepny A, Carey K, Mckenzie L, et al. The tumor suppressor Hic1 maintains chromosomal stability independent of Tp53[J]. Oncogene, 2018, 37(14):1939-1948.
doi: 10.1038/s41388-017-0022-1 pmid: 29367758 |
[24] |
Li P, Liu X, Dong ZM, et al. Epigenetic silencing of HIC1 promotes epithelial-mesenchymal transition and drives progression in esophageal squamous cell carcinoma[J]. Oncotarget, 2015, 6(35):38151-38165.
doi: 10.18632/oncotarget.5832 URL |
[25] |
Zhou X, Zhang P, Han H, et al. Hypermethylated in cancer 1 (HIC1) suppresses bladder cancer progression by targeting yes-associated protein (YAP) pathway[J]. J Cell Biochem, 2019, 120(4):6471-6481.
doi: 10.1002/jcb.27938 URL |
[1] | 李慧, 尹昱, 李春晓, 等. 呼吸训练对乳腺癌相关淋巴水肿康复疗效的研究进展#br#[J]. 组织工程与重建外科杂志, 2023, 19(4): 430-. |
[2] | 张莹莹, 李华, 管佳琴, 等.
乳腺癌患者术后早期上肢淋巴水肿的发生率及影响因素分析
[J]. 组织工程与重建外科杂志, 2023, 19(3): 242-. |
[3] | 朱丹丽 鲍婉婷 魏昊 郭善禹.
乳腺癌术后乳房缺损修复的研究进展
[J]. 组织工程与重建外科杂志, 2023, 19(2): 201-. |
[4] | 朱巧俐, 苗伊鸣, 陈小松. I~III期三阴性乳腺癌病人接受保乳手术或乳房切除术的预后分析[J]. 外科理论与实践, 2023, 28(04): 371-377. |
[5] | 杨奕, 杨兴霞, 金思励, 张旭, 朱娟英, 陈小松. 术前MRI检查在乳腺导管原位癌保乳手术的临床应用研究[J]. 外科理论与实践, 2023, 28(04): 378-382. |
[6] | 董军, 崔凤鸣, 刘军. 沉默Ki-67基因对乳腺癌MCF-7/DOX细胞多柔比星耐药性的影响[J]. 外科理论与实践, 2023, 28(03): 254-259. |
[7] | 高卫奇, 张旭, 王铮, 朱一霏, 黄佳慧, 洪进, 朱思吉, 陈小松, 黄欧, 何建蓉, 陈伟国, 李亚芬, 沈坤炜, 徐华, 吴佳毅. 新辅助治疗后腹壁下深血管穿支皮瓣即刻乳房重建手术的安全性研究[J]. 外科理论与实践, 2023, 28(02): 147-151. |
[8] | 张小丽 李赞 宋达疆 王业成 海涛. 带蒂胸外侧动脉穿支皮瓣在保乳术后即刻乳房重建中的临床应用[J]. 组织工程与重建外科杂志, 2022, 18(5): 382-. |
[9] | 宋达疆 李赞 章一新. 带蒂腹直肌皮瓣联合游离腹壁下动脉穿支皮瓣移植重建胸壁巨大缺损的手术策略[J]. 组织工程与重建外科杂志, 2022, 18(5): 386-. |
[10] | 姚成才 陈明 刘长春 黄传蔷 冼家仪 严国标 陈庞洲. 硅凝胶乳房假体联合钛网补片在早期乳腺癌即刻乳房重建中的应用[J]. 组织工程与重建外科杂志, 2022, 18(3): 247-. |
[11] | 廖晓明 蒋奕 唐玮 杨华伟 姬逸男 韦莉颖. 薄层血管化腹股沟淋巴结皮瓣移植联合反向淋巴显影在继发性上肢淋巴水肿手术中的应用[J]. 组织工程与重建外科杂志, 2022, 18(1): 8-. |
[12] | 宋景涌 汤鹏 钟晓捷 刘侠 孙洋 亢玉 王遥佳 陈安玥 陈怡安 吉训通 周艳虹 蒋曼妃 修骋 穆籣. 吻合口通畅性量化分析应用于乳腺癌腋窝淋巴结清扫术同期预防性淋巴管静脉吻合1例[J]. 组织工程与重建外科杂志, 2022, 18(1): 34-. |
[13] | 陈小松, 沈坤炜, 李宏为. 早期可手术乳腺癌的诊治现状与展望[J]. 外科理论与实践, 2022, 27(05): 385-386. |
[14] | 吴佳毅, 陆裕杰, 何金光, 沈坤炜, 徐华. 乳腺癌术后植入物乳房重建技术[J]. 外科理论与实践, 2022, 27(05): 387-391. |
[15] | 陈益定, 吴世杰. 遗传性乳腺癌外科治疗[J]. 外科理论与实践, 2022, 27(05): 392-395. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||