外科理论与实践 ›› 2020, Vol. 25 ›› Issue (06): 533-536.doi: 10.16139/j.1007-9610.2020.06.020
沈惟一(综述), 胡海, 蒋兆彦(审校)
收稿日期:
2020-08-20
出版日期:
2020-11-25
发布日期:
2022-07-20
基金资助:
SHEN Weiyi, HU Hai, JIANG Zhaoyan
Received:
2020-08-20
Online:
2020-11-25
Published:
2022-07-20
中图分类号:
沈惟一(综述), 胡海, 蒋兆彦(审校). 胆囊黏膜上皮功能改变在胆固醇结石形成作用的研究[J]. 外科理论与实践, 2020, 25(06): 533-536.
SHEN Weiyi, HU Hai, JIANG Zhaoyan. Changes in function of gallbladder mucosal epithelium and formation of cholesterol stones[J]. Journal of Surgery Concepts & Practice, 2020, 25(06): 533-536.
[1] |
Everhart JE, Ruhl CE. Burden of digestive diseases in the United States Part Ⅲ: liver, biliary tract, and pancreas[J]. Gastroenterology, 2009, 136(4):1134-1144.
doi: 10.1053/j.gastro.2009.02.038 pmid: 19245868 |
[2] |
Lammert F, Gurusamy K, Ko CW, et al. Gallstones[J]. Nat Rev Dis Primers, 2016, 2:16024.
doi: 10.1038/nrdp.2016.24 pmid: 27121416 |
[3] |
Chen Y, Kong J, Wu S. Cholesterol gallstone disease: focusing on the role of gallbladder[J]. Lab Invest, 2015, 95(2):124-131.
doi: 10.1038/labinvest.2014.140 URL |
[4] | Di Ciaula A, Portincasa P. Recent advances in understanding and managing cholesterol gallstones[J]. F1000 Res, 2018, 7:F1000 Faculty Rev-1529. |
[5] | Chen Y, Wu S, Tian Y, et al. Phosphorylation and subcellular localization of Na(+)/H(+) exchanger isoform 3 (NHE3) are associated with altered gallbladder absorptive function after formation of cholesterol gallstones[J]. J Physiol Biochem, 2017, 73(1):133-139. |
[6] |
Narins SC, Ramakrishnan R, Park EH, et al. Protein kinase C-alpha regulation of gallbladder Na+ transport becomes progressively more dysfunctional during gallstone formation[J]. J Lab Clin Med, 2005, 146(4):227-237.
pmid: 16194684 |
[7] |
Portincasa P, Palasciano G, Svelto M, et al. Aquaporins in the hepatobiliary tract. which, where and what they do in health and disease[J]. Eur J Clin Invest, 2008, 38(1):1-10.
doi: 10.1111/j.1365-2362.2007.01897.x pmid: 18173545 |
[8] | Sekine S, Shimada Y, Nagata T, et al. Prognostic significance of aquaporins in human biliary tract carcinoma[J]. Oncol Rep, 2012, 27(6):1741-1747. |
[9] |
Calamita G, Ferri D, Bazzini C, et al. Expression and subcellular localization of the AQP8 and AQP1 water channels in the mouse gall-bladder epithelium[J]. Biol Cell, 2005, 97(6):415-423.
doi: 10.1042/BC20040137 URL |
[10] |
van Erpecum KJ, Wang DQ, Moschetta A, et al. Gallbladder histopathology during murine gallstone formation: relation to motility and concentrating function[J]. J Lipid Res, 2006, 47(1):32-41.
doi: 10.1194/jlr.M500180-JLR200 pmid: 16224116 |
[11] |
Ambe PC, Godde D, Zirngibl H, et al. Aquaporin-1 and 8 expression in the gallbladder mucosa might not be associated with the development of gallbladder stones in humans[J]. Eur J Clin Invest, 2016, 46(3):227-233.
doi: 10.1111/eci.12586 URL |
[12] |
Strömsten A, von Bahr S, Bringman S, et al. Studies on the mechanism of accumulation of cholesterol in the gallbladder mucosa. evidence that sterol 27-hydroxylase is not a pathogenetic factor[J]. J Hepatol, 2004, 40(1):8-13.
pmid: 14672608 |
[13] |
Cui W, Jiang ZY, Cai Q, et al. Decreased NPC1L1 expression in the liver from Chinese female gallstone patients[J]. Lipids Health Dis, 2010, 9:17.
doi: 10.1186/1476-511X-9-17 URL |
[14] |
Jungst C, Sreejayan N, Eder MI, et al. Lipid peroxidation and mucin secretagogue activity in bile of gallstone patients[J]. Eur J Clin Invest, 2007, 37(9):731-736.
doi: 10.1111/j.1365-2362.2007.01853.x URL |
[15] |
Asai Y, Yamada T, Tsukita S, et al. Activation of the hypoxia inducible factor 1α subunit pathway in steatotic liver contributes to formation of cholesterol gallstones[J]. Gastroenterology, 2017, 152(6):1521-1535,e1528.
doi: 10.1053/j.gastro.2017.01.001 URL |
[16] |
Finzi L, Barbu V, Burgel PR, et al. MUC5AC, a gel-forming mucin accumulating in gallstone disease, is overproduced via an epidermal growth factor receptor pathway in the human gallbladder[J]. Am J Pathol, 2006, 169(6):2031-2041.
doi: 10.2353/ajpath.2006.060146 URL |
[17] |
Vilkin A, Nudelman I, Morgenstern S, et al. Gallbladder inflammation is associated with increase in mucin expression and pigmented stone formation[J]. Dig Dis Sci, 2007, 52(7):1613-1620.
doi: 10.1007/s10620-006-9162-9 URL |
[18] |
Yoon JH, Choi HS, Jun DW, et al. ATP-binding cassette sterol transporters are differentially expressed in normal and diseased human gallbladder[J]. Dig Dis Sci, 2013, 58(2):431-439.
doi: 10.1007/s10620-012-2481-0 URL |
[19] |
Mathur SK, Duhan A, Singh S, et al. Correlation of gallstone characteristics with mucosal changes in gall bladder[J]. Trop Gastroenterol, 2012, 33(1):39-44.
pmid: 22803294 |
[20] |
Maurer KJ, Rao VP, Ge Z, et al. T-cell function is critical for murine cholesterol gallstone formation[J]. Gastroenterology, 2007, 133(4):1304-1315.
doi: 10.1053/j.gastro.2007.07.005 pmid: 17919501 |
[21] | Kasprzak A, Szmyt M, Malkowski W, et al. Analysis of immunohistochemical expression of proinflammatory cytokines (IL-1alpha, IL-6, and TNF-alpha) in gallbladder mucosa: comparative study in acute and chronic calculous cholecystitis[J]. Folia Morphol (Warsz), 2015, 74(1):65-72. |
[22] | Imano M, Satou T, Itoh T, et al. An immunohistochemical study of osteopontin in pigment gallstone formation[J]. Am Surg, 2010, 76(1):91-95. |
[23] |
Yang L, Chen JH, Cai D, et al. Osteopontin plays an anti-nucleation role in cholesterol gallstone formation[J]. Hepatol Res, 2011, 41(5):437-445.
doi: 10.1111/j.1872-034X.2011.00790.x pmid: 21435127 |
[24] |
Lin J, Lu M, Shao WQ, et al. Osteopontin deficiency alters biliary homeostasis and protects against gallstone formation[J]. Sci Rep, 2016, 6:30215.
doi: 10.1038/srep30215 URL |
[25] |
Lin J, Shao WQ, Chen QZ, et al. Osteopontin deficiency protects mice from cholesterol gallstone formation by reducing expression of intestinal NPC1L1[J]. Mol Med Rep, 2017, 16(2):1785-1792.
doi: 10.3892/mmr.2017.6774 URL |
[26] |
Kasprzak AA, Szmyt M, Malkowski W, et al. Expression of phenotypic markers of mast cells, macrophages and dendritic cells in gallbladder mucosa with calculous cholecystitis[J]. Pol J Pathol, 2013, 64(4):281-289.
pmid: 24375043 |
[27] |
Pasternak A, Gil K, Gajda M, et al. Interstitial Cajal-like cell: a new player in cholelithiasis?[J]. Am J Gastroenterol, 2014, 109(4):603-604.
doi: 10.1038/ajg.2013.251 pmid: 24698872 |
[28] |
Pasternak A, Bugajska J, Szura M, et al. Biliary polyunsaturated fatty acids and telocytes in gallstone disease[J]. Cell Transplant, 2017, 26(1):125-133.
doi: 10.3727/096368916X692717 pmid: 27502173 |
[29] |
Wan JF, Chu SF, Zhou X, et al. Ursodeoxycholic acid protects interstitial Cajal-like cells in the gallbladder from undergoing apoptosis by inhibiting TNF-alpha expression[J]. Acta Pharmacol Sin, 2018, 39(9):1493-1500.
doi: 10.1038/aps.2017.206 URL |
[30] |
Lin MJ, Chen L, Huang ZP, et al. Neutrophils injure gallbladder interstitial Cajal-like cells in a guinea pig model of acute cholecystitis[J]. J Cell Physiol, 2019, 234(4):4291-4301.
doi: 10.1002/jcp.27197 URL |
[31] | Spetana J, Lipinski A, Jelen M. Comparison of the ICC location in the gallbladder wall in patients with cholelithiasis and patients with non-calculous changes[J]. Pol J Pathol, 2019, 70(3):205-209. |
[32] |
O′neil LJ, Kaplan MJ. NETched in stone[J]. Immunity, 2019, 51(3):413-414.
doi: 10.1016/j.immuni.2019.08.015 URL |
[33] |
Blazkova J, Gupta S, Liu Y, et al. Multicenter systems analysis of human blood reveals immature neutrophils in males and during pregnancy[J]. J Immunol, 2017, 198(6):2479-2488.
doi: 10.4049/jimmunol.1601855 pmid: 28179497 |
[1] | 轩辕欣阳, 徐佳珵, 王梦婷, 等.
基于单细胞转录组测序结果分析成纤维细胞促进口腔黏膜无瘢痕愈合的机制
[J]. 组织工程与重建外科杂志, 2023, 19(2): 115-. |
[2] | 徐凯, 李百文. 早期胃癌及胃癌前病变的内镜黏膜下剥离术治疗[J]. 内科理论与实践, 2023, 18(02): 102-106. |
[3] | 张诚, 杨玉龙. 从胆胰管汇合部疾病分析认识胆石病的内镜治疗[J]. 外科理论与实践, 2023, 28(02): 119-123. |
[4] | 蒋兆彦, 沈惟一, 胡海. 肠道因素对胆石病防治的作用[J]. 外科理论与实践, 2023, 28(02): 91-93. |
[5] | 冯梅晶, 任新平. 超声造影在胆囊隆起样病变诊断中的应用进展[J]. 诊断学理论与实践, 2023, 22(01): 68-74. |
[6] | 李为光, 孙蕴伟, 孙菁, 张本炎, 王华枫, 钱爱华. 直径≤1 cm的直肠神经分泌肿瘤2种内镜治疗方法的比较[J]. 内科理论与实践, 2022, 17(04): 289-294. |
[7] | 韩华中, 徐春华, 范文阶, 齐志鹏, 李冰, 周平红, 姚礼庆, 钟芸诗, 陆品相. 内镜切除结肠直肠巨大息肉术后留置肛管减压的研究[J]. 外科理论与实践, 2022, 27(04): 351-356. |
[8] | 郭良奇, 严志龙, 张谋成. 腹腔镜经胃腔手术治疗胃黏膜下肿瘤和早期胃癌[J]. 外科理论与实践, 2022, 27(04): 380-383. |
[9] | 何牧野 王涵 曲明悦 王春仁. 生物材料应用于内镜黏膜下注射液的研究进展[J]. 组织工程与重建外科杂志, 2021, 17(2): 165-. |
[10] | 刘靖正, 任重, 胡健卫, 秦文政, 钟芸诗, 周平红. 内镜全层切除术治疗胃黏膜下小肿瘤的临床疗效分析[J]. 外科理论与实践, 2021, 26(03): 236-239. |
[11] | 阿扎提江·艾尼瓦尔, 阿卜杜外力·艾尔肯, 玉苏甫, 于文庆, 克力木. 雌激素是新疆女性胆石病人的危险因素[J]. 外科理论与实践, 2021, 26(03): 259-261. |
[12] | 王佳琪, 马右维, 肖双涛, 黄雨达, 于志浩, 李征, 郑亚民. 胆囊胆固醇息肉与胆囊腺瘤的术前预测因素研究[J]. 外科理论与实践, 2021, 26(02): 144-148. |
[13] | 代冬, 冯小东. miR-200a在TGF-β诱导口腔黏膜修复中的功能研究[J]. 组织工程与重建外科杂志, 2020, 16(2): 107-111. |
[14] | . 勘误[J]. 组织工程与重建外科杂志, 2019, 15(6): 388-388. |
[15] | 余美婵,陈凯炎,刘思源. miR-2053 在口腔黏膜修复中对成纤维细胞的影响及其机制研究[J]. 组织工程与重建外科杂志, 2019, 15(5): 325-329. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||