外科理论与实践 ›› 2023, Vol. 28 ›› Issue (02): 91-93.doi: 10.16139/j.1007-9610.2023.02.01
• 专家论坛 • 下一篇
收稿日期:
2023-01-11
出版日期:
2023-03-25
发布日期:
2023-06-06
通讯作者:
蒋兆彦,E-mail: 基金资助:
JIANG Zhaoyan(), SHEN Weiyi, HU Hai
Received:
2023-01-11
Online:
2023-03-25
Published:
2023-06-06
摘要:
胆石病是一种常见外科疾病。肠道相关因素在胆石病发生过程中的作用日益受到重视。影响胆固醇结石形成的主要因素包括胆固醇吸收、胆汁酸浓度、肠道菌群改变等,均与肠道相关。正确认识胆石形成中的肠道因素,有助于胆石病的防治。针对肠道不同靶点的治疗方法,未来或许在胆石病预防和胆囊切除术后治疗中起到重要作用。
中图分类号:
蒋兆彦, 沈惟一, 胡海. 肠道因素对胆石病防治的作用[J]. 外科理论与实践, 2023, 28(02): 91-93.
JIANG Zhaoyan, SHEN Weiyi, HU Hai. Factors related to intestine have a role in prevention and treatment for gallstone disease[J]. Journal of Surgery Concepts & Practice, 2023, 28(02): 91-93.
[1] | 蒋兆彦, 吴健, 韩天权, 等. 胆固醇结石病防治研究的再发展[J]. 外科理论与实践, 2015, 20(2):108-111. |
JIANG Z Y, WU J, HAN T Q, et al. Study on prevention and treatment of cholesterol gallstone disease[J]. J Surg Concepts Pract, 2015, 20(2):108-111. | |
[2] |
LAMMERT F, GURUSAMY K, KO C W, et al. Gallstones[J]. Nat Rev Dis Primers, 2016, 2:16024.
doi: 10.1038/nrdp.2016.24 pmid: 27121416 |
[3] |
LUO J, YANG H, SONG B L. Mechanisms and regulation of cholesterol homeostasis[J]. Nat Rev Mol Cell Biol, 2020, 21(4):225-245.
doi: 10.1038/s41580-019-0190-7 |
[4] |
ALTMANN S W, DAVIS H R Jr, ZHU L J, et al. Niemann-Pick C1 1 like 1 protein is critical for intestinal cholesterol absorption[J]. Science, 2004, 303(5661):1201-1204.
doi: 10.1126/science.1093131 URL |
[5] |
LI P S, FU Z Y, ZHANG Y Y, et al. The clathrin adaptor Numb regulates intestinal cholesterol absorption through dynamic interaction with NPC1L1[J]. Nat Med, 2014, 20(1):80-86.
doi: 10.1038/nm.3417 |
[6] |
ZHANG Y Y, FU Z Y, WEI J, et al. A LIMA1 variant promotes low plasma LDL cholesterol and decreases intestinal cholesterol absorption[J]. Science, 2018, 360(6393):1087-1092.
doi: 10.1126/science.aao6575 URL |
[7] |
KAWASE A, ARAKI Y, UEDA Y, et al. Impact of a high-cholesterol diet on expression levels of Niemann-Pick C1-like 1 and intestinal transporters in rats and mice[J]. Eur J Drug Metab Pharmacokinet, 2016, 41(4):457-463.
doi: 10.1007/s13318-015-0269-2 URL |
[8] |
MALHOTRA P, SONI V, YAMANASHI Y, et al. Mechanisms of Niemann-Pick type C1 like 1 protein degradation in intestinal epithelial cells[J]. Am J Physiol Cell Physiol, 2019, 316(4):C559-C566.
doi: 10.1152/ajpcell.00465.2018 URL |
[9] |
TICHO A L, MALHOTRA P, DUDEJA P K, et al. Intestinal absorption of bile acids in health and disease[J]. Compr Physiol, 2019, 10(1):21-56.
doi: 10.1002/cphy.c190007 pmid: 31853951 |
[10] |
INAGAKI T, CHOI M, MOSCHETTA A, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis[J]. Cell Metab, 2005, 2(4):217-225.
doi: 10.1016/j.cmet.2005.09.001 pmid: 16213224 |
[11] | 孙海东, 蒋兆彦. 肠道微生态与胆汁酸代谢研究进展[J]. 生命科学, 2016, 28(11):1405-1409. |
SUN H D, JIANG Z Y. Recent progress in gut microbiota and bile acid metabolism[J]. Chin Bull Life Sci, 2016, 28(11):1405-1409. | |
[12] |
KEREN N, KONIKOFF F M, PAITAN Y, et al. Interactions between the intestinal microbiota and bile acids in gallstones patients[J]. Environ Microbiol Rep, 2015, 7(6):874-880.
doi: 10.1111/1758-2229.12319 URL |
[13] |
WANG Q, HAO C, YAO W, et al. Intestinal flora imba-lance affects bile acid metabolism and is associated with gallstone formation[J]. BMC Gastroenterol, 2020, 20(1):59.
doi: 10.1186/s12876-020-01195-1 |
[14] |
CHOI S B, LEW L C, YEO S K, et al. Probiotics and the BSH-related cholesterol lowering mechanism: a Jekyll and Hyde scenario[J]. Crit Rev Biotechnol, 2015, 35(3):392-401.
doi: 10.3109/07388551.2014.889077 URL |
[15] |
JONES M L, TOMARO-DUCHESNEAU C, MARTONI C J, et al. Cholesterol lowering with bile salt hydrolase-active probiotic bacteria, mechanism of action, clinical evidence, and future direction for heart health applications[J]. Expert Opin Biol Ther, 2013, 13(5):631-642.
doi: 10.1517/14712598.2013.758706 pmid: 23350815 |
[16] |
FUNABASHI M, GROVE T L, WANG M, et al. A metabolic pathway for bile acid dehydroxylation by the gut microbiome[J]. Nature, 2020, 582(7813):566-570.
doi: 10.1038/s41586-020-2396-4 |
[17] |
HU H, SHAO W, LIU Q, et al. Gut microbiota promotes cholesterol gallstone formation by modulating bile acid composition and biliary cholesterol secretion[J]. Nat Commun, 2022, 13(1):252.
doi: 10.1038/s41467-021-27758-8 pmid: 35017486 |
[18] |
CHEN Y, WENG Z, LIU Q, et al. FMO3 and its metabolite TMAO contribute to the formation of gallstones[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(10):2576-2585.
doi: 10.1016/j.bbadis.2019.06.016 URL |
[19] |
WEINGLASS A B, KOHLER M, SCHULTE U, et al. Extracellular loop C of NPC1L1 is important for binding to ezetimibe[J]. Proc Natl Acad Sci U S A, 2008, 105(32):11140-11145.
doi: 10.1073/pnas.0800936105 URL |
[20] |
WANG H H, PORTINCASA P, MENDEZ-SANCHEZ N, et al. Effect of ezetimibe on the prevention and dissolution of cholesterol gallstones[J]. Gastroenterology, 2008, 134(7):2101-2110.
doi: 10.1053/j.gastro.2008.03.011 pmid: 18442485 |
[21] |
SHEN W, WANG Y, SHAO W, et al. Dietary plant sterols prevented cholesterol gallstone formation in mice[J]. Food Funct, 2021, 12(23):11829-11837.
doi: 10.1039/d1fo02695j pmid: 34787152 |
[22] |
HONG T, ZOU J, JIANG X, et al. Curcumin supplementation ameliorates bile cholesterol supersaturation in hamsters by modulating gut microbiota and cholesterol absorption[J]. Nutrients, 2022, 14(9):1828.
doi: 10.3390/nu14091828 URL |
[23] |
LYE H S, RUSUL G, LIONG M T. Removal of cholesterol by lactobacilli via incorporation and conversion to coprostanol[J]. J Dairy Sci, 2010, 93(4):1383-1392.
doi: 10.3168/jds.2009-2574 pmid: 20338415 |
[24] |
STIEHL A, RAEDSCH R, RUDOLPH G, et al. Effect of ursodeoxycholic acid on biliary bile acid and bile lipid composition in gallstone patients[J]. Hepatology, 1984, 4(1):107-111.
doi: 10.1002/hep.1840040119 pmid: 6693062 |
[25] |
WANG D Q, TAZUMA S, COHEN D E, et al. Feeding natural hydrophilic bile acids inhibits intestinal cholesterol absorption: studies in the gallstone-susceptible mouse[J]. Am J Physiol Gastrointest Liver Physiol, 2003, 285(3):G494-G502.
doi: 10.1152/ajpgi.00156.2003 URL |
[1] | 张诚, 杨玉龙. 从胆胰管汇合部疾病分析认识胆石病的内镜治疗[J]. 外科理论与实践, 2023, 28(02): 119-123. |
[2] | 潘琼, 李明巧, 谭雅, 余思睿, 柴进. 胆酸转运蛋白调控胆汁酸代谢的分子机制[J]. 内科理论与实践, 2022, 17(01): 4-10. |
[3] | 汪佩文, 董育玮. 胆汁淤积的定义、病因及分类[J]. 内科理论与实践, 2022, 17(01): 15-23. |
[4] | 阿扎提江·艾尼瓦尔, 阿卜杜外力·艾尔肯, 玉苏甫, 于文庆, 克力木. 雌激素是新疆女性胆石病人的危险因素[J]. 外科理论与实践, 2021, 26(03): 259-261. |
[5] | 王佳琪, 马右维, 肖双涛, 黄雨达, 于志浩, 李征, 郑亚民. 胆囊胆固醇息肉与胆囊腺瘤的术前预测因素研究[J]. 外科理论与实践, 2021, 26(02): 144-148. |
[6] | 沈惟一(综述), 胡海, 蒋兆彦(审校). 胆囊黏膜上皮功能改变在胆固醇结石形成作用的研究[J]. 外科理论与实践, 2020, 25(06): 533-536. |
[7] | 陆启帆, 蒋兆彦, 王启晗, 赵刚, 胡海. 牛磺熊去氧胆酸预防高脂饮食小鼠胆囊结石的研究[J]. 外科理论与实践, 2019, 24(06): 522-529. |
[8] | 陈超波, 蒋兆彦. 胆汁酸代谢与非酒精性脂肪性肝病[J]. 外科理论与实践, 2019, 24(04): 371-374. |
[9] | 陈志斌, 王子秋, 王朝晖, 谢静远, 杜雯, 马晓波, 俞海瑾, 杨振华, 陈晓农,. 家族性高胆固醇血症基因突变分析及长期血脂吸附疗效研究[J]. 内科理论与实践, 2019, 14(04): 219-224. |
[10] | 蒋兆彦, 胡海, 韩天权, 张圣道. 肠道菌群改变与胆固醇结石病[J]. 外科理论与实践, 2019, 24(02): 93-95. |
[11] | 李妍, 陆伦根,. 胆汁酸信号通路在慢性肝病中的治疗意义[J]. 内科理论与实践, 2018, 13(06): 394-399. |
[12] | 周学谦, 陈文生,. 胆汁淤积的分子机制与治疗靶点[J]. 内科理论与实践, 2018, 13(06): 388-393. |
[13] | 陆伦根, 胡江峰,. 肠道菌群与胆汁酸的研究进展[J]. 内科理论与实践, 2018, 13(06): 329-333. |
[14] | 邵文涛, 孙海东, 王起晗, 刘倩, 蒋兆彦, 顾爱华. 盐酸小檗碱缓解高胆固醇所致肝脏损伤的机制体外及动物实验研究[J]. 诊断学理论与实践, 2018, 17(03): 311-317. |
[15] | 王启晗, 孙海东, 蔡劬, 胡海, 韩天权, 蒋兆彦. Ezetimibe抑制胆固醇结石形成的实验研究[J]. 外科理论与实践, 2018, 23(01): 41-47. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||