外科理论与实践 ›› 2021, Vol. 26 ›› Issue (02): 179-182.doi: 10.16139/j.1007-9610.2021.02.018
• 综述 • 上一篇
收稿日期:
2020-10-09
出版日期:
2021-03-25
发布日期:
2022-07-27
通讯作者:
周全红 审校
E-mail:zhouanny@hotmail.com
基金资助:
CHEN Xuemei, CHEN Yuanyang, ZHOU Quanhong()
Received:
2020-10-09
Online:
2021-03-25
Published:
2022-07-27
Contact:
ZHOU Quanhong
E-mail:zhouanny@hotmail.com
中图分类号:
陈雪梅, 陈远洋, 周全红. 研究微重力对甲状腺肿瘤的影响[J]. 外科理论与实践, 2021, 26(02): 179-182.
CHEN Xuemei, CHEN Yuanyang, ZHOU Quanhong. Research on microgravity which affects thyroid tumor[J]. Journal of Surgery Concepts & Practice, 2021, 26(02): 179-182.
表1
微重力对甲状腺肿瘤细胞的影响
参考文献 | 生物学表型 | 细胞系 | 结果 |
---|---|---|---|
张倍宁[ | 增殖能力(抑制) | FRTL-5 | 细胞周期蛋白:Cyclin D1、Cyclin B1↓ |
Warnke等[ | 细胞外基质和细胞骨架 | Nthy-ori3-1 | TUBB、ACTB、PFN-1、PKC、ERK1、ERK2、Casp9、OSP↑, VEGF↓ |
Grimm等[ | 细胞活性(抑制)和细胞凋亡(促进) | ML-1 | 促进凋亡:PARP、p53和Bax↑,抑制凋亡:BCL-2↓ |
Riwaldt等[ | 细胞外基质和细胞骨架 | UCLA RO82-W-1 | VEGFD、VEGFA、MSN、MMP3、CAV1、ACTB、ACTA2、KRT8、TUBB↑,MMP9、CTGF、MCP1↓ |
Kopp等[ | 细胞外基质和细胞骨架 | FTC-133 | ACTB、TUBB、EGF、CTGF、VEGF、ERK1、ERK2↑, CAV1、CAV2、CTGF、PRKCA、MMP3↓ |
Ulbrich等[ | 细胞外基质和细胞骨架 | ML-1 | PXN、VCL、PTK2、F-actin、ACTB、KRT80、OPN、FN↑,COL4A5、LIMA1、MTSS1↓ |
表2
微重力影响细胞变化的可能机制
参考文献 | 细胞系 | 干预条件 | 信号通路 |
---|---|---|---|
Melnik等[ | FTC-133 | RPM | 地塞米松可通过Wnt/β-catenin信号通路影响模拟微重力下甲状腺癌细胞球体的形成 |
Zhao等[ | BL6-10 | FRC | FAK/RhoA调节的mTORC1途径抑制细胞增殖/转移 |
Deng等[ | U251 | SM-31 随机定位器 | 抑制FAK/RhoA/Rock和FAK / Nek2信号通路 |
Zhao等[ | BL6-10 | RPM | 通过对Uev1A/TICAM/TRAF/NF-κB调节的细胞凋亡以及p53/PCNA-和ATM/ATR-Chk1/2控制的DNA损伤应答途径的联合调节来促进细胞凋亡应答 |
Lin等[ | NCSCs | RCCS | ↑CXCR4表达和RhoA-ROCK1-p38 MAPK-p53信号转导破坏大鼠NCSC的细胞骨架并增加其凋亡 |
韩标等[ | MC3T3-E1 | RCCS | 激活NF-κB通路来调节MC3T3-E1细胞的分化 |
表3
甲状腺肿瘤细胞在真实或模拟微重力条件下形成MCS的研究
参考文献 | 细胞系 | 干预条件 | 结果 |
---|---|---|---|
Warnke等[ | FTC-133 | RPM(3 d) | 成球时:CAV1、CTGF↓ |
Riwaldt等[ | UCLA RO82-W-1 | RPM (24 h) | 促进成球(血管生成,防止细胞外蛋白过度积聚):VEGFA、VEGFD、MSN、MMP3↑;成球时(编码结构蛋白):ACTB、ACTA2、KRT8、TUBB、EZR、RDX、PRKCA、CAV1、MMP9、PAI1、CTGF、MCP1↓ |
Kopp等[ | FTC-133、Nthy-ori 3-1 | RPM(14 d) | 重力敏感的生长或血管生成因子参与成球:VEGF、FLT-1、FLK-1、CD44、Copine 1、TGM2、IL-6、IL-8、IL-17、OPN、NGAL、LCN2 |
Riwaldt等[ | FTC-133 | 太空失重(12 d) | 抑制MCS生长的蛋白质:细胞外基质蛋白↑,磷酸化profilin 1↑ |
Bauer等[ | FTC-133 | RPM(3 d) | 成球时:CAV1、p130cas↓,ASAP1↑, PXN、VCL、PTK2利于成球 |
Riwaldt等[ | FTC-133 | 太空失重(12 d) | 成球时:CAV1、VCAM-1↓, 参与抑制MCS形成:CAV1、VCAM、组织因子、α2巨球蛋白、载脂蛋白B、基质金属蛋白酶1的组织抑制剂和蛋白激酶Cα |
Svejgaard等[ | ML-1、UCLA RO82-W-1 | RPM(7 d)和FRC(7 d) | ML-1细胞:IL-6、MCP-1↑(促进MCS形成);RO82-W-1细胞(RPM/FRC):IL-6↑,MCP-1分泌远低于ML-1细胞的释放,MCP-1的释放被抑制 |
Ma等[ | FTC-133 | 太空失重(10 d) | 成球时:(影响血管生成的细胞因子和生长因子的基因表达)IL6、IL15、VEGFD、FGF17↑,VEGFA↓ |
Pietsch等[ | FTC-133 | 太空失重(10 d) | CTGF, EGF↓ |
Grosse等[ | FTC-133 | RPM(24 h) | 参与成球:NF-kB |
[17] | Krüger M, Melnik D, Kopp S, et al. Fighting thyroid cancer with microgravity research[J]. Int J Mol Sci, 2019, 20(10):2553. |
[18] | Grimm D, Bauer J, Kossmehl P, et al. Simulated microgravity alters differentiation and increases apoptosis in human follicular thyroid carcinoma cells[J]. FASEB J, 2002, 16(6):604-606. |
[19] | Kopp S, Sahana J, Islam T, et al. The role of NFκB in spheroid formation of human breast cancer cells cultured on the Random Positioning Machine[J]. Sci Rep, 2018, 8(1):921. |
[20] | Bauer J, Wehland M, Pietsch J, et al. Annotated gene and proteome data support recognition of interconnections between the results of different experiments in space research[J]. Microgravity Sci Tec, 2016, 28(3):357-365. |
[21] |
Riwaldt S, Bauer J, Wehland M, et al. Pathways Regula-ting spheroid formation of human follicular thyroid cancer cells under simulated microgravity conditions: a genetic approach[J]. Int J Mol Sci, 2016, 17(4):528.
doi: 10.3390/ijms17040528 pmid: 27070589 |
[22] | Kopp S, Warnke E, Wehland M, et al. Mechanisms of three-dimensional growth of thyroid cells during long-term simulated microgravity[J]. Sci Rep, 2015, 5:16691. |
[23] | Ulbrich C, Pietsch J, Grosse J, et al. Differential gene regulation under altered gravity conditions in follicular thyroid cancer cells: relationship between the extracellular matrix and the cytoskeleton[J]. Cell Physiol Biochem, 2011, 28(2):185-198. |
[24] | Zhao T, Li R, Tan X, et al. Simulated microgravity reduces focal adhesions and alters cytoskeleton and nuclear positioning leading to enhanced apoptosis via suppressing FAK/RhoA-mediated mTORC1/NF-κB and ERK1/2 pathways[J]. Int J Mol Sci, 2018, 19(7):1994. |
[25] | Deng B, Liu R, Tian X, et al. Simulated microgravity inhibits the viability and migration of glioma via FAK/RhoA/Rock and FAK/Nek2 signaling[J]. In Vitro Cell Dev Biol Anim, 2019, 55(4):260-271. |
[26] |
Zhao T, Tang X, Umeshappa CS, et al. Simulated microgravity promotes cell apoptosis through suppressing Uev1A/TICAM/TRAF/NF-κB-regulated anti-apoptosis and p53/PCNA- and ATM/ATR-Chk1/2-controlled DNA-da-mage response pathways[J]. J Cell Biochem, 2016, 117(9):2138-2148.
doi: 10.1002/jcb.25520 pmid: 26887372 |
[27] | Lin SC, Gou GH, Hsia CW, et al. Simulated microgravity disrupts cytoskeleton organization and increases apoptosis of rat neural crest stem cells via upregulating CXCR4 expression and RhoA-ROCK1-p38 MAPK-p53 signaling[J]. Stem Cells Dev, 2016, 25(15):1172-1193. |
[28] | 韩标, 张扬, 李昊, 等. 模拟微重力环境下核因子κB信号通路调节MC3T3-E1细胞成骨分化的实验研究[J]. 生物医学工程学杂志, 2019, 36(3):421-427. |
[29] |
Riwaldt S, Pietsch J, Sickmann A, et al. Identification of proteins involved in inhibition of spheroid formation under microgravity[J]. Proteomics, 2015, 15(17):2945-2952.
doi: 10.1002/pmic.201500067 pmid: 25930030 |
[30] | Siveen KS, Prabhu K, Krishnankutty R, et al. Vascular endothelial growth factor (VEGF) signaling in tumour vascularization: potential and challenges[J]. Curr Vasc Phar-macol, 2017, 15(4):339-351. |
[31] | Pietsch J, Sickmann A, Weber G, et al. A proteomic approach to analysing spheroid formation of two human thyroid cell lines cultured on a random positioning machine[J]. Proteomics, 2011, 11(10):2095-2104. |
[32] | Bauer J, Kopp S, Schlagberger EM, et al. Proteome analysis of human follicular thyroid cancer cells exposed to the random positioning machine[J]. Int J Mol Sci, 2017, 18(3):546. |
[33] |
Riwaldt S, Bauer J, Pietsch J, et al. The importance of caveolin-1 as key-regulator of three-dimensional growth in thyroid cancer cells cultured under real and simulated microgravity conditions[J]. Int J Mol Sci, 2015, 16(12):28296-28310.
doi: 10.3390/ijms161226108 pmid: 26633361 |
[34] | Svejgaard B, Wehland M, Ma X, et al. Common effects on cancer cells exerted by a random positioning machine and a 2D clinostat[J]. PLoS One, 2015, 10(8):e0135157. |
[35] | Ma X, Pietsch J, Wehland M, et al. Differential gene expression profile and altered cytokine secretion of thyroid cancer cells in space[J]. FASEB J, 2014, 28(2):813-835. |
[36] | Pietsch J, Ma X, Wehland M, et al. Spheroid formation of human thyroid cancer cells in an automated culturing system during the shenzhou-8 space mission[J]. Biomaterials, 2013, 34(31):7694-7705. |
[37] |
Grosse J, Wehland M, Pietsch J, et al. Gravity-sensitive signaling drives 3-dimensional formation of multicellular thyroid cancer spheroids[J]. FASEB J, 2012, 26(12):5124-5140.
doi: 10.1096/fj.12-215749 pmid: 22964303 |
[38] |
Hammond TG, Benes E, O′Reilly KC, et al. Mechanical culture conditions effect gene expression: gravity-induced changes on the space shuttle[J]. Physiol Genomics, 2000, 3(3):163-173.
pmid: 11015612 |
[1] | Jhala DV, Kale RK, Singh RP. Microgravity alters cancer growth and progression[J]. Curr Cancer Drug Targets, 2014, 14(4):394-406. |
[2] | 苟鸿蒙, 胡瑜, 杨春. 微重力对人类细胞影响的研究进展[J]. 医学综述, 2018, 24(7):1279-1283,1288. |
[3] |
Bradbury P, Wu H, Choi JU, et al. Modeling the impact of microgravity at the cellular level: implications for human disease[J]. Front Cell Dev Biol, 2020, 8:96.
doi: 10.3389/fcell.2020.00096 pmid: 32154251 |
[4] | Albi E, Krüger M, Hemmersbach R, et al. Impact of gravity on thyroid cells[J]. Int J Mol Sci, 2017, 18(5):972. |
[5] |
Plakhuta-Plakutina GI. Effect of weightlessness and artificial gravitation on thyroid gland morphology[J]. Arkh Anat Gistol Embriol, 1979, 76(3):17-21.
pmid: 435096 |
[6] | Aleshcheva G, Bauer J, Hemmersbach R, et al. Scaffold-free tissue formation under real and simulated microgra-vity conditions[J]. Basic Clin Pharmacol Toxicol, 2016, 119(Suppl 3):26-33. |
[7] | Warnke E, Pietsch J, Wehland M, et al. Spheroid formation of human thyroid cancer cells under simulated microgravity: a possible role of CTGF and CAV1[J]. Cell Commun Signal, 2014, 12:32. |
[8] | Masini MA, Albi E, Barmo C, et al. The impact of long-term exposure to space environment on adult mammalian organisms: a study on mouse thyroid and testis[J]. PLoS One, 2012, 7(4):e35418. |
[9] | 张倍宁. RCCS模拟微重力影响大鼠甲状腺滤泡上皮细胞生长特性和分泌功能的研究[D]. 安徽医科大学, 2018,1-65. |
[10] |
Albi E, Ambesi-Impiombato FS, Peverini M, et al. Thyrotropin receptor and membrane interactions in FRTL-5 thyroid cell strain in microgravity[J]. Astrobiology, 2011, 11(1):57-64.
doi: 10.1089/ast.2010.0519 pmid: 21294645 |
[11] | Melnik D, Sahana J, Corydon TJ, et al. Dexamethasone inhibits spheroid formation of thyroid cancer cells exposed to simulated microgravity[J]. Cells, 2020, 9(2):367. |
[12] |
Martin A, Zhou A, Gordon RE, et al. Thyroid organoid formation in simulated microgravity: influence of ke-ratinocyte growth factor[J]. Thyroid, 2000, 10(6):481-487.
pmid: 10907991 |
[13] | Warnke E, Pietsch J, Kopp S, et al. Cytokine release and focal adhesion proteins in normal thyroid cells cultured on the random positioning machine[J]. Cell Physiol Biochem, 2017, 43(1):257-270. |
[14] |
Vistejnova L, Safrankova B, Nesporova K, et al. Low molecular weight hyaluronan mediated CD44 dependent induction of IL-6 and chemokines in human dermal fibroblasts potentiates innate immune response[J]. Cytokine, 2014, 70(2):97-103.
doi: 10.1016/j.cyto.2014.07.006 pmid: 25126764 |
[15] |
Infanger M, Kossmehl P, Shakibaei M, et al. Simulated weightlessness changes the cytoskeleton and extracellular matrix proteins in papillary thyroid carcinoma cells[J]. Cell Tissue Res, 2006, 324(2):267-277.
pmid: 16432709 |
[16] | Lin X, Zhang K, Wei D, et al. The impact of spaceflight and simulated microgravity on cell adhesion[J]. Int J Mol Sci, 2020, 21(9):3031. |
[39] | Pacifico F, Leonardi A. Role of NF-kappaB in thyroid cancer[J]. Mol Cell Endocrinol, 2010, 321(1):29-35. |
[1] | 贺文, 顾建华, 邢戌健, 翁子毅, 费健. 术中发现气管憩室2例病例报告并文献复习[J]. 外科理论与实践, 2023, 28(04): 383-387. |
[2] | 中华医学会内分泌学分会. 甲状腺功能异常新型冠状病毒感染临床应对指南[J]. 内科理论与实践, 2023, 18(01): 13-15. |
[3] | 中华医学会内分泌学分会. 新型冠状病毒肺炎疫情下甲状腺功能亢进症和甲状腺功能减退症管理专家建议[J]. 诊断学理论与实践, 2022, 21(02): 128-129. |
[4] | 孙烁烁, 韦晓, 陈国芳, 刘超. 儿童亚临床甲状腺功能减退的诊治:困惑与共识[J]. 内科理论与实践, 2021, 16(06): 438-441. |
[5] | 王甜甜, 谢秋萍, 王平. 机器人甲状腺手术的颈侧区淋巴结清扫[J]. 外科理论与实践, 2021, 26(06): 476-481. |
[6] | 杨田, 吉翔, 牛建梅, 孔晓晓, 吕明丽. 二维超声在产前胎儿胸腺发育评估中的应用[J]. 诊断学理论与实践, 2021, 20(05): 471-474. |
[7] | 李淑雨, 沈琳辉,. 2型糖尿病患者参考范围甲状腺激素与糖尿病肾病的相关性分析[J]. 内科理论与实践, 2020, 15(01): 38-44. |
[8] | 吴庆华, 俞黎, 包皙婷, 孔雷, 刘鑫, 邱伟华, 项明, 赵任. 单中心分化型甲状腺癌全乳晕径路内镜手术学习曲线分析[J]. 外科理论与实践, 2018, 23(04): 363-368. |
[9] | 禤立平, 侯亚楠, 彭魁, 赵志云, 李勉, 陈宇红, 戴蒙, 徐敏, 毕宇芳, 王卫庆, 张迪, 徐佶佶. 上海地区中老年亚临床甲状腺功能减退与颈动脉内中膜厚度的相关性流行病调查[J]. 诊断学理论与实践, 2018, 17(04): 444-448. |
[10] | 于起春, 殷剑光, 尚艳红, 邱伟华, 谈坚. 巨滤泡型甲状腺乳头状癌(附3例报告)[J]. 外科理论与实践, 2018, 23(01): 57-61. |
[11] | 张良俊1,2,李晓慈1,吴静怡1,蔡爱峰1. 大型空间展开机构微重力环境模拟 悬吊装置热结构耦合分析[J]. 上海交通大学学报(自然版), 2017, 51(8): 954-961. |
[12] | 刘颖, 张生来,. 甲状腺功能亢进的术前准备方法[J]. 外科理论与实践, 2017, 22(06): 550-551. |
[13] | 周罗成, 王尧, 王晓, 王海嵘,. 2型糖尿病合并甲状腺功能异常患者凝血功能的回顾性研究[J]. 内科理论与实践, 2017, 12(04): 283-287. |
[14] | 黄海燕, 翁原驰, 严佶祺, 李宏为,. Graves病合并甲状腺癌的研究进展[J]. 外科理论与实践, 2016, 21(05): 446-450. |
[15] | 刘锦铭, 赵勤华,. 少见类型肺高压的诊治进展[J]. 内科理论与实践, 2016, 11(04): 222-226. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||