外科理论与实践 ›› 2023, Vol. 28 ›› Issue (06): 563-567.doi: 10.16139/j.1007-9610.2023.06.013
何熹, 史苑, 钱凯 综述, 王卓颖 审校
收稿日期:
2023-11-13
出版日期:
2023-11-25
发布日期:
2024-03-04
基金资助:
HE Xi, SHI Yuan, QIAN Kai, WANG Zhuoying
Received:
2023-11-13
Online:
2023-11-25
Published:
2024-03-04
摘要:
蛋白质赖氨酸甲基转移酶(protein lysine methyltransferase, PKMT)能催化组蛋白尾部和非组蛋白靶标上的赖氨酸残基甲基化。这类重要的翻译后修饰,可影响染色质的结构和紧密程度,进而影响基因表达。越来越多证据表明,PKMT的遗传改变会影响PKMT在组织中的正常表达从而发挥致癌或抑癌功能。在多种实体瘤中发现PKMT的表达与肿瘤病人的预后有关。本综述总结Zeste增强子同源物2(enhancer of zeste homologue 2, EZH2)、组蛋白-赖氨酸N-甲基转移酶2(histone-lysine N-methyltransferase 2, KMT2)家族和含有SET结构域及MYND结构域蛋白(SET and MYND domain-containing protein, SMYD)家族三类主要PKMT的功能及其在甲状腺癌中的作用。
中图分类号:
何熹, 史苑, 钱凯, 王卓颖. 蛋白质赖氨酸甲基转移酶在甲状腺癌中的研究进展[J]. 外科理论与实践, 2023, 28(06): 563-567.
HE Xi, SHI Yuan, QIAN Kai, WANG Zhuoying. Advances of protein lysine methyltransferases in thyroid carcinoma[J]. Journal of Surgery Concepts & Practice, 2023, 28(06): 563-567.
[1] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249.
doi: 10.3322/caac.v71.3 URL |
[2] |
ZHENG R S, ZHANG S W, ZENG HW, et al. Cancer incidence and mortality in China, 2016[J]. J National Cancer Center, 2022, 2(1):1-9.
doi: 10.1016/j.jncc.2022.02.002 URL |
[3] |
DAWSON M A, KOUZARIDES T. Cancer epigenetics: from mechanism to therapy[J]. Cell, 2012, 150(1):12-27.
doi: 10.1016/j.cell.2012.06.013 pmid: 22770212 |
[4] |
BHATTACHARYYA S, MATTIROLI F, LUGER K. Archaeal DNA on the histone merry-go-round[J]. FEBS J, 2018, 285(17):3168-3174.
doi: 10.1111/febs.14495 pmid: 29729078 |
[5] |
BAE W K, HENNIGHAUSEN L. Canonical and non-canonical roles of the histone methyltransferase EZH2 in mammary development and cancer[J]. Mol Cell Endocrinol, 2014, 382(1):593-597.
doi: S0303-7207(13)00205-0 pmid: 23684884 |
[6] |
BORBONE E, TRONCONE G, FERRARO A, et al. Enhancer of zeste homolog 2 overexpression has a role in the development of anaplastic thyroid carcinomas[J]. J Clin Endocrinol Metab, 2011, 96(4):1029-1038.
doi: 10.1210/jc.2010-1784 pmid: 21289264 |
[7] |
GUO K, QIAN K, SHI Y, et al. LncRNA-MIAT promotes thyroid cancer progression and function as ceRNA to target EZH2 by sponging miR-150-5p[J]. Cell Death Dis, 2021, 12(12):1097.
doi: 10.1038/s41419-021-04386-0 pmid: 34811354 |
[8] |
XUE L, YAN H, CHEN Y, et al. EZH2 upregulation by ERα induces proliferation and migration of papillary thyroid carcinoma[J]. BMC Cancer, 2019, 19(1):1094.
doi: 10.1186/s12885-019-6306-9 pmid: 31718595 |
[9] |
SPONZIELLO M, DURANTE C, BOICHARD A, et al. Epigenetic-related gene expression profile in medullary thyroid cancer revealed the overexpression of the histone methyltransferases EZH2 and SMYD3 in aggressive tumours[J]. Mol Cell Endocrinol, 2014, 392(1-2):8-13.
doi: 10.1016/j.mce.2014.04.016 pmid: 24813658 |
[10] |
TSAI C C, CHIEN M N, CHANG Y C, et al. Overexpression of histone H3 lysine 27 trimethylation is associated with aggressiveness and dedifferentiation of thyroid cancer[J]. Endocr Pathol, 2019, 30(4):305-311.
doi: 10.1007/s12022-019-09586-1 |
[11] |
WANG Z, DAI J, YAN J, et al. Targeting EZH2 as a novel therapeutic strategy for sorafenib-resistant thyroid carcinoma[J]. J Cell Mol Med, 2019, 23(7):4770-4778.
doi: 10.1111/jcmm.14365 pmid: 31087496 |
[12] |
DE MELLO D C, SAITO K C, CRISTOVÃO M M, et al. Modulation of EZH2 activity induces an antitumoral effect and cell redifferentiation in anaplastic thyroid cancer[J]. Int J Mol Sci, 2023, 24(9):7872.
doi: 10.3390/ijms24097872 URL |
[13] | 梁碧君, 李湘平, 鲁娟, 等. EZH2对鼻咽癌细胞增殖和侵袭影响的研究[J]. 中华耳鼻咽喉头颈外科杂志, 2012, 47(4):298-304. |
LIANG B J, LI X P, LU J, et al. Study on the effect of EZH2 on the proliferation and invasion of nasopharyngeal cancer cells[J]. Chin J Otorhinolaryngol Head Neck Surg, 2012, 47(4):298-304. | |
[14] | SI Y, WEN J, HU C, et al. LINC00891 promotes tumorigenesis and metastasis of thyroid cancer by regulating SMAD2/3 via EZH2[J]. Curr Med Chem, 2023. |
[15] | DE MARTINO M, PELLECCHIA S, DECAUSSIN-PETRUCCI M, et al. Drug-induced inhibition of HMGA and EZH2 activity as a possible therapy for anaplastic thyroid carcinoma[J]. Cell Cycle, 2024:1-14. |
[16] | ZHANG C, HUA Y, QIU H, et al. KMT2A regulates cervical cancer cell growth through targeting VDAC1[J]. Aging (Albany NY), 2020, 12(10):9604-9620. |
[17] |
ZHAO D, YUAN H, FANG Y, et al. Histone methyltransferase KMT2B promotes metastasis and angiogenesis of cervical cancer by upregulating EGF expression[J]. Int J Biol Sci, 2023, 19(1):34-49.
doi: 10.7150/ijbs.72381 pmid: 36594087 |
[18] |
FENG J F, WANG J, XIE G, et al. KMT2B promotes the growth of renal cell carcinoma via upregulation of SNHG12 expression and promotion of CEP55 transcription[J]. Cancer Cell Int, 2022, 22(1):197.
doi: 10.1186/s12935-022-02607-w |
[19] |
SIERRA J, YOSHIDA T, JOAZEIRO C A, et al. The APC tumor suppressor counteracts beta-catenin activation and H3K4 methylation at Wnt target genes[J]. Genes Dev, 2006, 20(5):586-600.
doi: 10.1101/gad.1385806 URL |
[20] |
COLAMAIO M, PUCA F, RAGOZZINO E, et al. MiR-142-3p down-regulation contributes to thyroid follicular tumorigenesis by targeting ASH1L and MLL1[J]. J Clin Endocrinol Metab, 2015, 100(1):E59-E69.
doi: 10.1210/jc.2014-2280 URL |
[21] |
FAGAN R J, DINGWALL A K. COMPASS ascending: emerging clues regarding the roles of MLL3/KMT2C and MLL2/KMT2D proteins in cancer[J]. Cancer Lett, 2019, 458:56-65.
doi: S0304-3835(19)30319-2 pmid: 31128216 |
[22] |
NA F, PAN X, CHEN J, et al. KMT2C deficiency promotes small cell lung cancer metastasis through DNMT3A-mediated epigenetic reprogramming[J]. Nat Cancer, 2022, 3(6):753-767.
doi: 10.1038/s43018-022-00361-6 |
[23] |
ALAM H, TANG M, MAITITUOHETI M, et al. KMT2D deficiency impairs super-enhancers to confer a glycolytic vulnerability in lung cancer[J]. Cancer Cell, 2020, 37(4):599-617.e7.
doi: S1535-6108(20)30106-9 pmid: 32243837 |
[24] |
CHO S J, YOON C, LEE J H, et al. KMT2C mutations in diffuse-type gastric adenocarcinoma promote epithelial-to-mesenchymal transition[J]. Clin Cancer Res, 2018, 24(24):6556-6569.
doi: 10.1158/1078-0432.CCR-17-1679 URL |
[25] |
NIEMINEN T T, WALKER C J, OLKINUORA A, et al. Thyroid carcinomas that occur in familial adenomatous polyposis patients recurrently harbor somatic variants in APC, BRAF, and KTM2D[J]. Thyroid, 2020, 30(3):380-388.
doi: 10.1089/thy.2019.0561 URL |
[26] |
SONG J, LIU Y, CHEN Q, et al. Expression patterns and the prognostic value of the SMYD family members in human breast carcinoma using integrative bioinformatics analysis[J]. Oncol Lett, 2019, 17(4):3851-3861.
doi: 10.3892/ol.2019.10054 pmid: 30930987 |
[27] |
KOMATSU S, ICHIKAWA D, HIRAJIMA S, et al. Overexpression of SMYD2 contributes to malignant outcome in gastric cancer[J]. Br J Cancer, 2015, 112(2):357-364.
doi: 10.1038/bjc.2014.543 |
[28] |
XU W, CHEN F, FEI X, et al. Overexpression of SET and MYND domain-containing protein 2 (SMYD2) is associated with tumor progression and poor prognosis in patients with papillary thyroid carcinoma[J]. Med Sci Monit, 2018, 24:7357-7365.
doi: 10.12659/MSM.910168 URL |
[29] |
HUANG J, PEREZ-BURGOS L, PLACEK B J, et al. Repression of p53 activity by Smyd2-mediated methylation[J]. Nature, 2006, 444(7119):629-632.
doi: 10.1038/nature05287 |
[30] |
TANG M, CHEN G, TU B, et al. SMYD2 inhibition-mediated hypomethylation of Ku70 contributes to impaired nonhomologous end joining repair and antitumor immunity[J]. Sci Adv, 2023, 9(24):eade6624.
doi: 10.1126/sciadv.ade6624 URL |
[31] |
HAMAMOTO R, SILVA F P, TSUGE M, et al. Enhanced SMYD3 expression is essential for the growth of breast cancer cells[J]. Cancer Sci, 2006, 97(2):113-118.
doi: 10.1111/cas.2006.97.issue-2 URL |
[32] |
ZHU Y, ZHU M X, ZHANG X D, et al. SMYD3 stimulates EZR and LOXL2 transcription to enhance proliferation, migration, and invasion in esophageal squamous cell carcinoma[J]. Hum Pathol, 2016, 52:153-163.
doi: 10.1016/j.humpath.2016.01.012 pmid: 26980013 |
[33] |
KUNIZAKI M, HAMAMOTO R, SILVA F P, et al. The lysine 831 of vascular endothelial growth factor receptor 1 is a novel target of methylation by SMYD3[J]. Cancer Res, 2007, 67(22):10759-10765.
doi: 10.1158/0008-5472.CAN-07-1132 pmid: 18006819 |
[34] |
RUBIO-TOMÁS T. Novel insights into SMYD2 and SMYD3 inhibitors: from potential anti-tumoural therapy to a variety of new applications[J]. Mol Biol Rep, 2021, 48(11):7499-7508.
doi: 10.1007/s11033-021-06701-6 |
[35] |
SHANG L, WEI M. Inhibition of SMYD2 sensitized cisplatin to resistant cells in NSCLC through activating p53 pathway[J]. Front Oncol, 2019, 9:306.
doi: 10.3389/fonc.2019.00306 pmid: 31106145 |
[36] |
FAN Y, FAN X, YAN H, et al. Long non-coding ROR promotes the progression of papillary thyroid carcinoma through regulation of the TESC/ALDH1A1/TUBB3/PTEN axis[J]. Cell Death Dis, 2022, 13(2):157.
doi: 10.1038/s41419-021-04210-9 pmid: 35173149 |
[37] | LIAO T, WANG Y J, HU J Q, et al. Histone methyltransferase KMT5A gene modulates oncogenesis and lipid metabolism of papillary thyroid cancer in vitro[J]. Oncol Rep, 2018, 39(5):2185-2192. |
[1] | 柳卫. 靶碘联合:进展期分化型甲状腺癌治疗新策略[J]. 外科理论与实践, 2023, 28(06): 520-523. |
[2] | 刘杰, 先柯瑶. 分化型甲状腺癌术后促甲状腺激素抑制治疗的共识和争议[J]. 外科理论与实践, 2023, 28(06): 507-511. |
[3] | 王卓颖, 史苑, 郭凯, 钱凯. 儿童及青少年甲状腺癌诊治的挑战与机遇[J]. 外科理论与实践, 2023, 28(06): 496-500. |
[4] | 林庭伃 综述, 赵艳娜, 费健 审校. 热消融技术治疗甲状腺微小乳头状癌的现况[J]. 外科理论与实践, 2023, 28(05): 477-482. |
[5] | 贺文, 顾建华, 邢戌健, 翁子毅, 费健. 术中发现气管憩室2例病例报告并文献复习[J]. 外科理论与实践, 2023, 28(04): 383-387. |
[6] | 吴春晓, 顾凯, 庞怡, 鲍萍萍, 王春芳, 施亮, 向詠梅, 龚杨明, 窦剑明, 吴梦吟, 付晨, 施燕. 2016年上海市甲状腺癌发病和死亡情况与2002—2016年间变化趋势分析[J]. 外科理论与实践, 2022, 27(01): 58-65. |
[7] | 詹灵(综述), 邱伟华(审校). 阿帕替尼治疗放射性碘难治性与高度侵袭性甲状腺癌的研究进展[J]. 外科理论与实践, 2021, 26(06): 564-567. |
[8] | 姚京, 李晨, 田文. 甲状腺癌的规范诊治[J]. 外科理论与实践, 2021, 26(06): 467-471. |
[9] | 唐娟, 刘志艳. 第4版WHO分化型甲状腺癌病理分类及其进展[J]. 外科理论与实践, 2021, 26(06): 504-509. |
[10] | 王卓颖, 史苑, 郭凯, 钱凯. 青少年分化型甲状腺癌的诊治:从陌生到规范[J]. 外科理论与实践, 2021, 26(06): 497-499. |
[11] | 黄乃思, 陈嘉莹, 嵇庆海, 王宇. 靶向药物时代局部晚期甲状腺癌的新辅助治疗[J]. 外科理论与实践, 2021, 26(06): 493-496. |
[12] | 赖丽梅, 周建桥. 超声引导下射频消融术在甲状腺结节治疗中的应用进展[J]. 诊断学理论与实践, 2021, 20(02): 216-220. |
[13] | 王星, 汪蓉晖, 张桂萍, 董屹婕, 周伟, 詹维伟. 10 388个甲状腺结节行超声引导下细针抽吸活检的甲状腺癌各亚型诊断准确率的10年研究[J]. 诊断学理论与实践, 2020, 19(04): 359-363. |
[14] | 周伟, 陈易来, 詹维伟. 细针穿刺洗脱液中甲状腺球蛋白检测在诊断分化型甲状腺癌淋巴结转移中的应用进展[J]. 诊断学理论与实践, 2020, 19(04): 339-343. |
[15] | 顾耀耀, 倪雪君. 超声在甲状腺癌颈部淋巴结转移临床诊断中的实用价值[J]. 诊断学理论与实践, 2019, 18(06): 662-667. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||