外科理论与实践 ›› 2023, Vol. 28 ›› Issue (06): 574-579.doi: 10.16139/j.1007-9610.2023.06.015
• 综述 • 上一篇
收稿日期:
2023-10-08
出版日期:
2023-11-25
发布日期:
2024-03-04
通讯作者:
王俊青,E-mail: wangjunqingmd@hotmail.com;郝风节,E-mail: fengjie_haochn@163.com
基金资助:
ZHANG Yifan, LU Yiquan, HAO Fengjie(), WANG Junqing()
Received:
2023-10-08
Online:
2023-11-25
Published:
2024-03-04
摘要:
成人肝脏中20%~50%的肝细胞为含2套以上染色体的多倍体细胞,是独特的多倍体器官。肝细胞多倍体化始于断奶时胰岛素信号的改变,受多种细胞周期调控因子控制,实现在多倍体细胞比例、倍性和空间分布等方面的调控,对肝脏代谢、再生和抑制肿瘤形成有重要作用。但在慢性病毒性肝炎和非酒精性脂肪肝病中,肝细胞可因细胞周期检查点抑制、氧化应激出现病理性多倍体化并参与疾病进程。区分多倍体肝细胞在生理和病理条件下的异同,有助于更好地认识慢性肝脏病与肿瘤发生的关系。
中图分类号:
张亦凡, 鲁逸权, 郝风节, 王俊青. 多倍体肝细胞的生理功能及其病理性改变的相关疾病[J]. 外科理论与实践, 2023, 28(06): 574-579.
ZHANG Yifan, LU Yiquan, HAO Fengjie, WANG Junqing. Physiological function of polyploid hepatocytes and pathological changes in its associated diseases[J]. Journal of Surgery Concepts & Practice, 2023, 28(06): 574-579.
[1] |
GJELSVIK K J, BESEN-MCNALLY R, LOSICK V P. Solving the polyploid mystery in health and disease[J]. Trends Genet, 2019, 35(1):6-14.
doi: S0168-9525(18)30181-1 pmid: 30470486 |
[2] |
SEVERIN E, WILLERS R, BETTECKEN T. Flow cytometric analysis of mouse hepatocyte ploidy. Ⅱ. The development of polyploidy pattern in four mice strains with different life spans[J]. Cell Tissue Res, 1984, 238(3):649-652.
doi: 10.1007/BF00219884 URL |
[3] |
DUNCAN A W, HANLON NEWELL A E, SMITH L, et al. Frequent aneuploidy among normal human hepatocytes[J]. Gastroenterology, 2012, 142(1):25-28.
doi: 10.1053/j.gastro.2011.10.029 pmid: 22057114 |
[4] |
WILKINSON P D, DUNCAN A W. Differential roles for diploid and polyploid hepatocytes in acute and chronic liver injury[J]. Semin Liver Dis, 2021, 41(1):42-49.
doi: 10.1055/s-0040-1719175 pmid: 33764484 |
[5] |
MATSUMOTO T, WAKEFIELD L, TARLOW B D, et al. In vivo lineage tracing of polyploid hepatocytes reveals extensive proliferation during liver regeneration[J]. Cell Stem Cell, 2020, 26(1):34-47.e3.
doi: 10.1016/j.stem.2019.11.014 URL |
[6] |
PANDIT S K, WESTENDORP B, NANTASANTI S, et al. E2F8 is essential for polyploidization in mammalian cells[J]. Nat Cell Biol, 2012, 14(11):1181-1191.
doi: 10.1038/ncb2585 pmid: 23064264 |
[7] |
WEI Y, WANG Y G, JIA Y, et al. Liver homeostasis is maintained by midlobular zone 2 hepatocytes[J]. Science, 2021, 371(6532):eabb1625.
doi: 10.1126/science.abb1625 URL |
[8] |
RICHTER M L, DELIGIANNIS I K, YIN K, et al. Single-nucleus RNA-seq2 reveals functional crosstalk between liver zonation and ploidy[J]. Nat Commun, 2021, 12(1):4264.
doi: 10.1038/s41467-021-24543-5 pmid: 34253736 |
[9] |
ZHANG S, ZHOU K, LUO X, et al. The polyploid state plays a tumor-suppressive role in the liver[J]. Dev Cell, 2018, 44(4):447-459.e5.
doi: S1534-5807(18)30010-8 pmid: 29429824 |
[10] |
DUNCAN A W, TAYLOR M H, HICKEY R D, et al. The ploidy conveyor of mature hepatocytes as a source of genetic variation[J]. Nature, 2010, 467(7316):707-710.
doi: 10.1038/nature09414 |
[11] |
MATSUMOTO T, WAKEFIELD L, PETERS A, et al. Proliferative polyploid cells give rise to tumors via ploidy reduction[J]. Nat Commun, 2021, 12(1):646.
doi: 10.1038/s41467-021-20916-y |
[12] |
DONNE R, SANGOUARD F, CELTON-MORIZUR S, et al. Hepatocyte polyploidy: driver or gatekeeper of chronic liver diseases[J]. Cancers (Basel), 2021, 13(20):5151.
doi: 10.3390/cancers13205151 URL |
[13] |
CELTON-MORIZUR S, MERLEN G, COUTON D, et al. Polyploidy and liver proliferation: central role of insulin signaling[J]. Cell Cycle, 2010, 9(3):460-466.
doi: 10.4161/cc.9.3.10542 URL |
[14] |
HSU S H, DELGADO E R, OTERO P A, et al. MicroRNA-122 regulates polyploidization in the murine liver[J]. Hepatology, 2016, 64(2):599-615.
doi: 10.1002/hep.28573 URL |
[15] |
MORENO-MARíN N, MERINO J M, ALVAREZ-BARRIENTOS A, et al. Aryl hydrocarbon receptor promotes liver polyploidization and inhibits PI3K, ERK, and Wnt/β-Catenin signaling[J]. iScience, 2018, 4:44-63.
doi: 10.1016/j.isci.2018.05.006 URL |
[16] |
TANAMI S, BEN-MOSHE S, ELKAYAM A, et al. Dynamic zonation of liver polyploidy[J]. Cell Tissue Res, 2017, 368(2):405-410.
doi: 10.1007/s00441-016-2427-5 pmid: 27301446 |
[17] |
SLADKY V C, KNAPP K, SZABO T G, et al. PIDDosome-induced p53-dependent ploidy restriction facilitates hepatocarcinogenesis[J]. EMBO reports, 2020, 21(12):e50893.
doi: 10.15252/embr.202050893 URL |
[18] |
SLADKY V C, KNAPP K, SORATROI C, et al. E2F-family members engage the PIDDosome to limit hepatocyte ploidy in liver development and regeneration[J]. Developmental Cell, 2020, 52(3):335-349.
doi: S1534-5807(19)31039-1 pmid: 31983631 |
[19] |
FAVA L L, SCHULER F, SLADKY V, et al. The PIDDosome activates p53 in response to supernumerary centrosomes[J]. Genes Dev, 2017, 31(1):34-45.
doi: 10.1101/gad.289728.116 URL |
[20] |
GANEM N J, CORNILS H, CHIU S Y, et al. Cytokinesis failure triggers hippo tumor suppressor pathway activation[J]. Cell, 2014, 158(4):833-848.
doi: S0092-8674(14)00820-4 pmid: 25126788 |
[21] |
SLADKY V C, AKBARI H, TAPIAS-GOMEZ D, et al. Centriole signaling restricts hepatocyte ploidy to maintain liver integrity[J]. Genes Dev, 2022, 36(13-14):843-856.
doi: 10.1101/gad.349727.122 URL |
[22] |
LIANG C Q, ZHOU D C, PENG W T, et al. FoxO3 restricts liver regeneration by suppressing the proliferation of hepatocytes[J]. NPJ Regen Med, 2022, 7(1):33.
doi: 10.1038/s41536-022-00227-6 |
[23] |
JIN Y, ANBARCHIAN T, WU P, et al. Wnt signaling regulates hepatocyte cell division by a transcriptional repressor cascade[J]. Proc Natl Acad Sci U S A, 2022, 119(30):e2203849119.
doi: 10.1073/pnas.2203849119 URL |
[24] |
BAHAR HALPERN K, TANAMI S, LANDEN S, et al. Bursty gene expression in the intact mammalian liver[J]. Mol Cell, 2015, 58(1):147-156.
doi: 10.1016/j.molcel.2015.01.027 pmid: 25728770 |
[25] |
ANATSKAYA O V, VINOGRADOV A E. Genome multiplication as adaptation to tissue survival: evidence from gene expression in mammalian heart and liver[J]. Genomics, 2007, 89(1):70-80.
pmid: 17029690 |
[26] | SIGAL S H, RAJVANSHI P, GORLA G R, et al. Partial hepatectomy-induced polyploidy attenuates hepatocyte replication and activates cell aging events[J]. Am J Physiol, 1999, 276(5):G1260-G1272. |
[27] | LOSICK V P. Wound-Induced polyploidy is required for tissue repair[J]. Adv Wound Care(New Rochelle), 2016, 5(6):271-278. |
[28] |
WILKINSON P D, ALENCASTRO F, DELGADO E R, et al. Polyploid hepatocytes facilitate adaptation and regeneration to chronic liver injury[J]. Am J Pathol, 2019, 189(6):1241-1255.
doi: S0002-9440(18)30970-2 pmid: 30928253 |
[29] | OCHIAI T, URATA Y, YAMANO T, et al. Clonal expansion in evolution of chronic hepatitis to hepatocellular carcinoma as seen at an X-chromosome locus[J]. Hepato-logy, 2000, 31(3):615-621. |
[30] |
PARADIS V, DARGERE D, BONVOUST F, et al. Clonal analysis of micronodules in virus C-induced liver cirrhosis using laser capture microdissection (LCM) and HUMARA assay[J]. Lab Invest, 2000, 80(10):1553-1559.
doi: 10.1038/labinvest.3780165 pmid: 11045572 |
[31] |
VOUGIOUKALAKI M, DEMMERS J, VERMEIJ W P, et al. Different responses to DNA damage determine ageing differences between organs[J]. Aging Cell, 2022, 21(4):e13562.
doi: 10.1111/acel.v21.4 URL |
[32] |
WANG M J, CHEN F, LI J X, et al. Reversal of hepatocyte senescence after continuous in vivo cell proliferation[J]. Hepatology, 2014, 60(1):349-361.
doi: 10.1002/hep.v60.1 URL |
[33] |
GRAMANTIERI L, MELCHIORRI C, CHIECO P, et al. Alteration of DNA ploidy and cell nuclearity in human hepatocellular carcinoma associated with HBV infection[J]. J Hepatol, 1996, 25(6):848-853.
pmid: 9007712 |
[34] |
TOYODA H. Changes to hepatocyte ploidy and binuclearity profiles during human chronic viral hepatitis[J]. Gut, 2005, 54(2):297-302.
pmid: 15647198 |
[35] |
MEIJNIKMAN A S, VAN OLDEN C C, AYDIN Ö, et al. Hyperinsulinemia is highly associated with markers of hepatocytic senescence in two independent cohorts[J]. Diabetes, 2022, 71(9):1929-1936.
doi: 10.2337/db21-1076 pmid: 35713877 |
[36] |
BOU-NADER M, CARUSO S, DONNE R, et al. Polyploidy spectrum:a new marker in HCC classification[J]. Gut, 2020, 69(2):355-364.
doi: 10.1136/gutjnl-2018-318021 URL |
[37] |
HERBEIN G, NEHME Z. Polyploid giant cancer cells, a hallmark of oncoviruses and a new therapeutic challenge[J]. Front Oncol, 2020, 10:567116.
doi: 10.3389/fonc.2020.567116 URL |
[38] |
AHODANTIN J, BOU-NADER M, CORDIER C, et al. Hepatitis B virus X protein promotes DNA damage propagation through disruption of liver polyploidization and enhances hepatocellular carcinoma initiation[J]. Oncogene, 2019, 38(14):2645-2657.
doi: 10.1038/s41388-018-0607-3 pmid: 30538294 |
[39] | SMIRNOVA I S, AKSENOV N D, KASHUBA E V, et al. Hepatitis C virus core protein transforms murine fibroblasts by promoting genomic instability[J]. Cell Oncol, 2006, 28(4):177-190. |
[40] |
MILEO A M, MATTAROCCI S, MATARRESE P, et al. Hepatitis C virus core protein modulates pRb2/p130 expression in human hepatocellular carcinoma cell lines through promoter methylation[J]. J Exp Clin Cancer Res, 2015, 34:140.
doi: 10.1186/s13046-015-0255-1 pmid: 26576645 |
[41] |
GENTRIC G, MAILLET V, PARADIS V, et al. Oxidative stress promotes pathologic polyploidization in nonalcoholic fatty liver disease[J]. J Clin Invest, 2015, 125(3): 981-992.
doi: 10.1172/JCI73957 pmid: 25621497 |
[42] |
LI X, LIU L, LI R, et al. Hepatic loss of Lissencephaly 1 (Lis1) induces fatty liver and accelerates liver tumorige-nesis in mice[J]. J Biol Chem, 2018, 293(14):5160-5171.
doi: 10.1074/jbc.RA117.001474 URL |
[43] |
MORENO E, MATONDO A B, BONGIOVANNI L, et al. Inhibition of polyploidization in PTEN-deficient livers reduces steatosis[J]. Liver Int, 2022, 42(11):2442-2452.
doi: 10.1111/liv.15384 pmid: 35924448 |
[44] |
HAN Y H, KIM H J, KIM E J, et al. RORα decreases oxidative stress through the induction of SOD2 and GPx1 expression and thereby protects against nonalcoholic steatohepatitis in mice[J]. Antioxid Redox Signal, 2014, 21(15):2083-2094.
doi: 10.1089/ars.2013.5655 URL |
[45] |
KIM J Y, YANG I S, KIM H J, et al. RORα contributes to the maintenance of genome ploidy in the liver of mice with diet-induced nonalcoholic steatohepatitis[J]. Am J Physiol Endocrinol Metab, 2022, 322(2):E118-E131.
doi: 10.1152/ajpendo.00309.2021 URL |
[46] |
RUÀ S, COMINO A, FRUTTERO A, et al. Flow cytome-tric DNA analysis of cirrhotic liver cells in patients with hepatocellular carcinoma can provide a new prognostic factor[J]. Cancer, 1996, 78(6):1195-1202.
doi: 10.1002/(ISSN)1097-0142 URL |
[47] |
SAETER G, SCHWARZE P E, NESLAND J M, et al. Diploid nature of hepatocellular tumours developing from transplanted preneoplastic liver cells[J]. Br J Cancer, 1989, 59(2):198-205.
doi: 10.1038/bjc.1989.41 |
[48] |
GUO L, YI X, CHEN L, et al. Single-cell DNA sequencing reveals punctuated and gradual clonal evolution in hepatocellular carcinoma[J]. Gastroenterology, 2022, 162(1):238-252.
doi: 10.1053/j.gastro.2021.08.052 URL |
[49] |
CHAN C Y, YUEN V W, CHIU D K, et al. Polo-like kinase 4 inhibitor CFI-400945 suppresses liver cancer through cell cycle perturbation and eliciting antitumor immunity[J]. Hepatology, 2023, 77(3):729-744.
doi: 10.1002/hep.32461 URL |
[1] | 任新平, 李军建, 张杰, 詹维伟. 超声造影在肝局灶性病变诊疗中的应用进展[J]. 诊断学理论与实践, 2022, 21(06): 684-690. |
[2] | 管涛(综述), 张倜, 王鲁(审校). 肝细胞癌肺转移的潜在机制和治疗进展[J]. 外科理论与实践, 2022, 27(02): 180-184. |
[3] | 张希昊, 章馨允, 曹曼卿, 张金梁, 王华琪, 张苏, 付周, 王鲁, 张倜. 肝细胞癌的抗血管生成免疫联合介入治疗:肝动脉灌注化疗与化疗栓塞疗效的比较[J]. 外科理论与实践, 2022, 27(02): 152-157. |
[4] | 孙惠川. 肝细胞癌转化治疗的现状与展望[J]. 外科理论与实践, 2022, 27(02): 134-138. |
[5] | 马婧嶔, 杨敏捷, 颜志平. 精细TACE的治疗目标与栓塞终点[J]. 外科理论与实践, 2022, 27(02): 131-133. |
[6] | 冯浩, 吕子成, 夏强. 肝癌肝移植全过程管理及治疗进展[J]. 外科理论与实践, 2022, 27(02): 119-122. |
[7] | 黄纪伟, 邱国腾, 曾勇. 肝细胞癌外科治疗进展[J]. 外科理论与实践, 2022, 27(02): 113-118. |
[8] | 吴冬梅, 吴丽莉, 陈佳, 刘坤. 淋巴上皮样肝细胞肝癌一例报告附文献复习[J]. 诊断学理论与实践, 2021, 20(05): 498-501. |
[9] | 吴城孝, 方婕, 周霁川, 肖永胜, 张晓光. 基于TCGA数据库肝细胞癌microRNA-324-5p表达与预后危险因素分析[J]. 外科理论与实践, 2021, 26(03): 249-253. |
[10] | 汪楠, 郝风节, 王俊青. 肝细胞多倍体发生机制及其与肝细胞癌形成的相关性研究进展[J]. 诊断学理论与实践, 2020, 19(06): 618-621. |
[11] | 王秋云, 陈影, 赵冰, 孙思磊, 杨之涛, 毛恩强, 陈尔真. Sirt1通过HNF-1α/FXR-1通路调控脓毒症肝损伤的动物研究[J]. 诊断学理论与实践, 2020, 19(03): 279-285. |
[12] | 张倜, 杨雪娇. 肝癌靶向治疗相关高血压的发生与处置[J]. 外科理论与实践, 2020, 25(01): 29-34. |
[13] | 叶枫, 马迪, 龚笑勇, 杨宇尘, 陈拥军. BCLC分期A期原发性肝细胞肝癌自发性破裂的危险因素分析及预测[J]. 外科理论与实践, 2020, 25(01): 40-44. |
[14] | 李相成, 江王杰. 解剖性肝切除的沿革[J]. 外科理论与实践, 2020, 25(01): 20-24. |
[15] | 荚卫东, 陈浩. 肝细胞肝癌精准外科诊治[J]. 外科理论与实践, 2020, 25(01): 15-19. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||