外科理论与实践 ›› 2025, Vol. 30 ›› Issue (2): 138-145.doi: 10.16139/j.1007-9610.2025.02.08
收稿日期:
2024-12-05
出版日期:
2025-03-25
发布日期:
2025-07-07
通讯作者:
王路兵,E-mail:350054634@qq.com基金资助:
WANG Jun, HU Gangfeng, GAO Weichen, WANG Lubing()
Received:
2024-12-05
Online:
2025-03-25
Published:
2025-07-07
摘要:
目的:探究海兰地嗪(HER)对肝细胞癌(HCC)的自噬激活效应以及对细胞自噬性死亡的诱导作用。方法:首先通过CCK-8实验分析HER对HCC细胞Hep 3B和Huh-7的增殖抑制作用。不同浓度梯度和时间梯度HER处理HCC细胞,蛋白质印迹法分析自噬标志蛋白LC3从Ⅰ型向Ⅱ型转化以及SQSTM1/p62的变化。红色荧光蛋白(RFP)-LC3慢病毒感染HCC细胞,构建稳定表达RFP-LC3的细胞株,经HER处理之后,共聚焦显微镜观察细胞中RFP-LC3荧光斑点的聚集情况。透射电镜观察HER处理后细胞内的自噬体。自噬抑制剂巴佛洛霉素A1(BafA1)或羟氯喹(HCQ)结合HER处理细胞,流式细胞术分析细胞死亡比例;蛋白质印迹法分析单磷酸腺苷激活的蛋白激酶(AMPK)和哺乳动物雷帕霉素靶蛋白(mTOR)磷酸化水平。结果:HER抑制HCC细胞Hep 3B和Huh-7增殖,促进LC3从Ⅰ型向Ⅱ型转化,自噬激活呈现出药物浓度依赖性和时间依赖性。共聚焦显微镜和透射电镜显示,经HER处理后,细胞内的自噬囊泡显著增多。HER对细胞死亡的诱导作用被自噬抑制剂BafA1或HCQ抑制;HER增加AMPK磷酸化水平且降低mTOR磷酸化水平。结论:HER通过AMPK/mTOR信号通路诱导HCC细胞自噬且导致细胞自噬性死亡。
中图分类号:
王军, 胡刚峰, 高伟陈, 王路兵. 海兰地嗪通过AMPK/mTOR信号通路诱导肝细胞癌自噬性死亡[J]. 外科理论与实践, 2025, 30(2): 138-145.
WANG Jun, HU Gangfeng, GAO Weichen, WANG Lubing. Hernandezine induces autophagic cell death in hepatocellular carcinoma cells via the AMPK/mTOR signaling pathway[J]. Journal of Surgery Concepts & Practice, 2025, 30(2): 138-145.
[1] | 中华人民共和国国家卫生健康委员会医政司. 原发性肝癌诊疗指南(2024年版)[J]. 中国实用外科杂志, 2024, 44(4):361-386. |
Bureau of Medical Administration, National Health Commission of the People's Republic of China. Guideline for diagnosis and treatment of hepatocellular carcinoma(2024 edition)[J]. Chin J Pract Surg, 2024, 44(4):361-386. | |
[2] | 缪伟刚, 周金意, 韩仁强. 全球肝癌流行数据解析[J]. 中华流行病学杂志, 2024, 45(6):865-869. |
MIAO W G, ZHOU J Y, HAN R Q. Analysis of global liver cancer statistics[J]. Chin J Epidemiol, 2024, 45(6):865-869. | |
[3] | 郝运, 李川, 文天夫, 等. 全球及中国的肝癌流行病学特征: 基于《2022全球癌症统计报告》解读[J]. 中国普外基础与临床杂志, 2024, 31(7):781-789. |
HAO Y, LI C, WEN T F, et al. Epidemiological characteristics of liver cancer worldwide and in China: an interpretation of global cancer statistics 2022[J]. Chin J Bases Clin Gen Surg, 2024, 31(7):781-789. | |
[4] | SIEGEL R L, GIAQUINTO A N, JEMAL A. Cancer statistics,2024[J]. CA Cancer J Clin, 2024, 74(1):12-49. |
[5] | BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6):394-424. |
[6] |
LI P, LI X, WU Y, et al. A novel AMPK activator hernandezine inhibits LPS-induced TNFα production[J]. Oncotarget, 2017, 8(40):67218-67226.
doi: 10.18632/oncotarget.18365 pmid: 28978028 |
[7] |
LAW B Y, MOK S W, CHAN W K, et al. Hernandezine, a novel AMPK activator induces autophagic cell death in drug-resistant cancers[J]. Oncotarget, 2016, 7(7):8090-8104.
doi: 10.18632/oncotarget.6980 pmid: 26811496 |
[8] |
WANG X, LI X, XIA Y, et al. Hernandezine regulates proliferation and autophagy-induced apoptosis in melanoma cells[J]. J Nat Prod, 2022, 85(5):1351-1362.
doi: 10.1021/acs.jnatprod.2c00098 pmid: 35544345 |
[9] | HSIAO S H, LU Y J, YANG C C, et al. Hernandezine, a bisbenzylisoquinoline alkaloid with selective inhibitory activity against multidrug-resistance-linked ATP-binding cassette drug transporter ABCB1[J]. J Nat Prod, 2016, 79(8):2135-2142. |
[10] |
Kuok C, Wang Q, Fong P, et al. Inhibitory effect of hernandezine on the proliferation of hepatocellular carcinoma[J]. Biol Pharm Bull, 2023, 46(2):245-256.
doi: 10.1248/bpb.b22-00612 pmid: 36724952 |
[11] |
KLIONSKY D J, ABDEL-AZIZ A K, ABDELFATAH S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1[J]. Autophagy, 2021, 17(1):1-382.
doi: 10.1080/15548627.2020.1797280 pmid: 33634751 |
[12] |
LAHIRI V, HAWKINS W D, KLIONSKY D J. Watch what you (self-) eat: autophagic mechanisms that modulate metabolism[J]. Cell Metab, 2019, 29(4):803-826.
doi: S1550-4131(19)30131-7 pmid: 30943392 |
[13] | LI J, CHEN X, KANG R, et al. Regulation and function of autophagy in pancreatic cancer[J]. Autophagy, 2021, 17(11):3275-3296. |
[14] |
GALLUZZI L, GREEN D R. Autophagy-independent functions of the autophagy machinery[J]. Cell, 2019, 177(7):1682-1699.
doi: S0092-8674(19)30554-9 pmid: 31199916 |
[15] |
DENTON D, KUMAR S. Autophagy-dependent cell death[J]. Cell Death Differ, 2019, 26(4):605-616.
doi: 10.1038/s41418-018-0252-y pmid: 30568239 |
[16] | CHEN X, SHI C, HE M, et al. Endoplasmic reticulum stress: molecular mechanism and therapeutic targets[J]. Signal Transduct Target Ther, 2023, 8(1):352. |
[17] | FENG Q, SUN L, SUALEH M J, et al. Hernandezine promotes cancer cell apoptosis and disrupts the lysosomal acidic environment and cathepsin D maturation[J]. Chin J Nat Med, 2024, 22(5):387-401. |
[18] | BAI J, ZHANG S, CAO J, et al. Hernandezine, a natural herbal alkaloid, ameliorates type 2 diabetes by activating AMPK in two mouse models[J]. Phytomedicine,2022, 105:154366 |
[19] | SONG C F, HU Y H, MANG Z G, et al. Hernandezine induces autophagic cell death in human pancreatic cancer cells via activation of the ROS/AMPK signaling pathway[J]. Acta Pharmacol Sin, 2023, 44(4):865-876. |
[20] |
MIHAYLOVA M M, SHAW R J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism[J]. Nat Cell Biol, 2011, 13(9):1016-1023.
doi: 10.1038/ncb2329 pmid: 21892142 |
[21] | HERZIG S, SHAW R J. AMPK: guardian of metabolism and mitochondrial homeostasis[J]. Nat Rev Mol Cell Biol, 2018, 19(2):121-135. |
[22] | SONG C, XU W, WU H, et al. Photodynamic therapy induces autophagy-mediated cell death in human colorectal cancer cells via activation of the ROS/JNK signaling pathway[J]. Cell Death Dis, 2020, 11(10):938. |
[23] | LING NXY, KACZMAREK A, HOQUE A, et al. mTORC1 directly inhibits AMPK to promote cell proli-feation under nutrient stress[J]. Nat Metab, 2020, 2(1):41-49. |
[24] | PARK J M, LEE D H, KIM D H. Redefining the role of AMPK in autophagy and the energy stress response[J]. Nat Commun, 2023, 14(1):2994. |
[25] |
KIM J, GUAN K L. mTOR as a central hub of nutrient signalling and cell growth[J]. Nat Cell Biol, 2019, 21(1):63-71.
doi: 10.1038/s41556-018-0205-1 pmid: 30602761 |
[26] |
MOSSMANN D, PARK S, HALL M N. mTOR signalling and cellular metabolism are mutual determinants in cancer[J]. Nat Rev Cancer, 2018, 18(12):744-757.
doi: 10.1038/s41568-018-0074-8 pmid: 30425336 |
[1] | 李昂, 韩肖骅, 殷晓星. 肝细胞肝癌甲状腺转移(附1例报告)[J]. 外科理论与实践, 2025, 30(01): 66-69. |
[2] | 姜绍文, 周惠娟, 谢青. 我国原发性肝癌筛查的现状、挑战及发展方向[J]. 诊断学理论与实践, 2024, 23(01): 9-15. |
[3] | 戴靖宜, 蒋敬庭. 肝细胞肝癌肿瘤标志物诊断的新进展[J]. 诊断学理论与实践, 2023, 22(05): 486-493. |
[4] | Chang Jessica, 陈旭晓, 陈拥军. 脾脏在肝癌合并肝硬化中的临床价值[J]. 外科理论与实践, 2023, 28(04): 394-398. |
[5] | 叶枫, 龚笑勇, 任家俊, 蔡强, 陈胜. ERCP在原发性肝癌围术期胆道并发症诊治中的应用[J]. 外科理论与实践, 2023, 28(04): 355-360. |
[6] | 张辉, 龚玲, 郭茜, 罗艳. 肝癌全身麻醉射频消融术后应用舒更葡糖钠逆转神经肌肉阻滞的回顾性研究[J]. 外科理论与实践, 2023, 28(01): 72-76. |
[7] | 陈聪燕 综述, 王俊青, 陈拥军 审校. 肠道菌群与肝癌的发病机制[J]. 外科理论与实践, 2022, 27(03): 256-260. |
[8] | 任家俊, 陈拥军. 肝脾联合切除治疗原发性肝癌合并门静脉高压及脾功能亢进[J]. 外科理论与实践, 2022, 27(02): 139-144. |
[9] | 曹君, 陈亚进. 腹腔镜解剖性肝切除治疗肝癌的规范与思考[J]. 外科理论与实践, 2022, 27(02): 123-127. |
[10] | 朱鹏, 廖威, 张必翔, 陈孝平. 机器人肝癌肝切除应用现状与前景[J]. 外科理论与实践, 2022, 27(02): 95-99. |
[11] | 汤钊猷. 中华哲学思维对肝癌治疗的启迪[J]. 外科理论与实践, 2022, 27(02): 93-94. |
[12] | 吴冬梅, 吴丽莉, 陈佳, 刘坤. 淋巴上皮样肝细胞肝癌一例报告附文献复习[J]. 诊断学理论与实践, 2021, 20(05): 498-501. |
[13] | 苏长青. 从基础研究到临床转化应用谈肝癌的诊治进展[J]. 诊断学理论与实践, 2021, 20(05): 427-433. |
[14] | 汪楠, 郝风节, 王俊青. 肝细胞多倍体发生机制及其与肝细胞癌形成的相关性研究进展[J]. 诊断学理论与实践, 2020, 19(06): 618-621. |
[15] | 陈鹏, 李涛. 胞外囊泡携带的非编码RNA在肝癌发生、发展中的作用[J]. 外科理论与实践, 2020, 25(05): 447-451. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||