诊断学理论与实践 ›› 2023, Vol. 22 ›› Issue (05): 486-493.doi: 10.16150/j.1671-2870.2023.05.011
收稿日期:
2023-11-10
出版日期:
2023-10-25
发布日期:
2024-03-15
通讯作者:
蒋敬庭 E-mail:基金资助:
Received:
2023-11-10
Online:
2023-10-25
Published:
2024-03-15
摘要:
中国疾病预防控制中心数据显示,肝癌位居我国恶性肿瘤死因第2位,是死亡率较高的恶性肿瘤。肝癌具有早期诊断困难(约50%漏诊)、恶性程度高、异质性强及进展迅速等特点,早期诊断可提升治疗效果,延长患者生存期。肝癌的主要病理类型为肝细胞肝癌(hepatocellular carcinoma, HCC),其肿瘤标志物包括甲胎蛋白(α-fetoprotein, AFP)、维生素K缺乏或拮抗剂Ⅱ诱导的凝血酶原(protein induced by vitamin K deficiency or antagonist-Ⅱ, PIVKA-Ⅱ)、α-L-岩藻糖苷酶(α-L-fucosidase, AFU)等,检测简单且高效,但由于HCC的异质性,部分患者的标志物水平未出现异常,52%的小型 HCC(<3 cm)患者为AFP阴性,影响HCC诊断的准确率。一些新型肿瘤标志物已被发现,包括循环肿瘤细胞(circulating tumour cell, CTC)、循环游离核酸(包括循环游离DNA(circulating cell-free DNA, cfDNA)和微小RNA (microRNA,miRNA)以及外泌体等。90.81%的CTC阳性HCC患者(包括早期疾病患者),在随访3~5个月后可检测到非常小的HCC结节,表明CTC与HCC特征高度相关,术后监测CTC水平可在临床检测到复发结节出现之前预测HCC复发;cfDNA可作为HCC早期诊断的有效工具,而检测ctDNA内的突变可指导靶向治疗;miRNA可作为诊断疾病和监测疾病进展、预后情况的生物标志物;联合检测AFP与lncRNAs Panel(包含3种循环外泌体来源的长链非编码RNA,即ENSG00000248932.1、ENST00000440688.1、ENST00000457302.2)显示出比单独检测AFP更高的灵敏度和特异度(曲线下面积为0.910和0.408),可预测HCC的发生并动态监测HCC的转移。但这类新型肿瘤标志物仍具有一定的局限性,如由于这类标志物通常以较低水平存在,可能会导致较高的假阴性,并且缺乏标准化的分析前变量和分析变量,在稳定性方面具有局限性。这类肿瘤标志物目前仍不建议独立用于HCC的早期筛查、监测或是在临床上大规模应用,仅可作为传统诊断方法的补充。本文将对近年来肿瘤标志物在HCC诊断中的研究进展进行综述,总结传统肿瘤标志物(AFP、PIVKA-Ⅱ和AFU等)效能,介绍新型肿瘤标志物(CTC、cfDNA、ctDNA、miRNA和外泌体等)的研究进展及临床应用,并对未来提升HCC诊断准确率进行展望。
中图分类号:
戴靖宜, 蒋敬庭. 肝细胞肝癌肿瘤标志物诊断的新进展[J]. 诊断学理论与实践, 2023, 22(05): 486-493.
DAI Jingyi, JIANG Jingting. Advances in tumour markers for diagnosis of hepatocellular carcinoma[J]. Journal of Diagnostics Concepts & Practice, 2023, 22(05): 486-493.
表2
AFP、PIVKA-Ⅱ和AFP + PIVKA-Ⅱ检测HCC和早期HCC的诊断准确率(95%CI)
诊断 | 标志物 | 灵敏度(%) | 特异度(%) | AUC |
---|---|---|---|---|
HCC | AFP | 59 (54~63) | 86 (82~89) | 0.77 |
PIVKA-Ⅱ | 63 (58~67) | 91 (88~93) | 0.83 | |
AFP + PIVKA-Ⅱ | 81 (77~84) | 83 (77~87) | 0.88 | |
早期HCC | AFP | 48 (39~57) | 89 (79~95) | 0.68 |
PIVKA-Ⅱ | 45 (35~57) | 95 (91~97) | 0.84 | |
AFP + PIVKA-Ⅱ | 70 (61~78) | 83 (79~86) | 0.83 |
表4
部分miRNA在HCC发病机制中的作用及其临床应用
miRNA | 改变 | 机制 | 功能 | 靶标 | 应用 | 参考文献 |
---|---|---|---|---|---|---|
miRNA-122 | ↑ | p53信号通路 | 减少细胞侵袭、肿瘤发生、血管 生成 | BCL-W, BCL-XL | 诊断 | [ |
miRNA-125b | ↓ | Wnt/β catenein信号通路 | 减少细胞迁移、侵袭 | APC, β-catenin | 诊断 | [ |
miRNA-199b | ↓ | Akt信号通路 | 诱导EMT、侵袭、转移 | N-cadherin, TGF-β1 | 诊断 | [ |
miRNA-155 | ↑ | Wnt/β catenein信号通路,JAK/STAT信号通路 | 增强增殖、肿瘤发生 | KLF-4, SOCS1, ARID2 | 诊断 预后 | [ |
miRNA-221 | ↑ | PI3K/AKT/mTOR信号通路、TP53信号通路 | 促进细胞增殖、存活 | RB1, BMF, PTEN | 诊断 预后 | [ |
miRNA-21 | ↑ | PI3K/AKT/mTOR信号通路 | 促进肝细胞迁移、侵袭、血管生成 | PTEN, WNT | 预后 | [ |
miRNA-25 | ↑ | TP53信号通路,TGF-β肿瘤抑制信号通路 | 诱导EMT并促进转移 | BID, RhoGDI1 | 预后 | [ |
miRNA-125a | ↓ | PI3K/AKT/mTOR信号通路 | 调节VEGF-A的表达 | c-Raf, MMP11, SIRT7, VEGF-A | 预后 | [ |
miRNA-487a | ↑ | PIK3R1介导的AKT信号通路 | 促进增殖 | SPRED2, PIK3R1 | 预后 | [ |
miRNA-500a | ↑ | Wnt/β-catenin信号通路 | 抑制细胞凋亡、诱导进展 | BID, SFPR2, GSK-3β | 预后 | [ |
miRNA-638 | ↓ | JAK/STAT信号通路 | 减少细胞增殖、迁移 | SOX2 | 预后 | [ |
miRNA-940 | ↓ | PI3K-PKB/Akt信号通路 | 减少细胞侵袭、迁移 | CXCR2 | 预后 | [ |
[1] |
SIEGEL R L, GIAQUINTO A N, JEMAL A. Cancer statistics, 2024[J]. CA Cancer J Clin, 2024, 74(1):12-49.
doi: 10.3322/caac.v74.1 URL |
[2] |
VOGEL A, MEYER T, SAPISOCHIN G, et al. Hepatocellular carcinoma[J]. Lancet, 2022, 400(10360):1345-1362.
doi: 10.1016/S0140-6736(22)01200-4 pmid: 36084663 |
[3] |
EL-SERAG H B. Epidemiology of viral hepatitis and hepatocellular carcinoma[J]. Gastroenterology, 2012, 142(6):1264-1273.e1.
doi: 10.1053/j.gastro.2011.12.061 URL |
[4] |
KOKUDO N, TAKEMURA N, HASEGAWA K, et al. Clinical practice guidelines for hepatocellular carcinoma: The Japan Society of Hepatology 2017 (4th JSH-HCC guidelines) 2019 update[J]. Hepatol Res, 2019, 49(10):1109-1113.
doi: 10.1111/hepr.13411 pmid: 31336394 |
[5] |
TOMASI T B JR. Structure and function of alpha-fetoprotein[J]. Annu Rev Med, 1977, 28:453-465.
pmid: 67821 |
[6] |
FARINATI F, MARINO D, DE GIORGIO M, et al. Diagnostic and prognostic role of alpha-fetoprotein in hepatocellular carcinoma: both or neither?[J]. Am J Gastroenterol, 2006, 101(3):524-532.
doi: 10.1111/j.1572-0241.2006.00443.x pmid: 16542289 |
[7] |
SAITTA C, RAFFA G, ALIBRANDI A, et al. PIVKA-Ⅱ is a useful tool for diagnostic characterization of ultrasound-detected liver nodules in cirrhotic patients[J]. Medicine (Baltimore), 2017, 96(26):e7266.
doi: 10.1097/MD.0000000000007266 URL |
[8] |
SCHIEVING J H, DE VRIES M, VAN VUGT J M, et al. Alpha-fetoprotein, a fascinating protein and biomarker in neurology[J]. Eur J Paediatr Neurol, 2014, 18(3):243-248.
doi: 10.1016/j.ejpn.2013.09.003 URL |
[9] |
LIEBMAN H A, FURIE B C, TONG M J, et al. Des-gamma-carboxy (abnormal) prothrombin as a serum marker of primary hepatocellular carcinoma[J]. N Engl J Med, 1984, 310(22):1427-1431.
doi: 10.1056/NEJM198405313102204 URL |
[10] |
FENG H, LI B, LI Z, et al. PIVKA-Ⅱ serves as a potential biomarker that complements AFP for the diagnosis of hepatocellular carcinoma. BMC Cancer. 2021; 21(1):401.
doi: 10.1186/s12885-021-08138-3 |
[11] | LI C, ZHANG Z, ZHANG P, et al. Diagnostic accuracy of des-gamma-carboxy prothrombin versus α-fetoprotein for hepatocellular carcinoma: A systematic review[J]. Hepatol Res, 2014, 44(10):E11-E25. |
[12] |
YU R, TAN Z, XIANG X, et al. Effectiveness of PIVKA-Ⅱ in the detection of hepatocellular carcinoma based on real-world clinical data[J]. BMC Cancer, 2017, 17(1):608.
doi: 10.1186/s12885-017-3609-6 |
[13] | KIM D Y, PAIK Y H, AHN S H, et al. PIVKA-Ⅱ is a useful tumor marker for recurrent hepatocellular carcinoma after surgical resection[J]. Oncology, 2007, 72 Suppl 1:52-57. |
[14] |
KAIBORI M, MATSUI Y, YANAGIDA H, et al. Positive status of alpha-fetoprotein and des-gamma-carboxy prothrombin: important prognostic factor for recurrent hepatocellular carcinoma[J]. World J Surg, 2004, 28(7):702-707.
pmid: 15185000 |
[15] |
CONCHIE J, HAY A J. Mammalian glycosidases. 4. The intracellular localization of beta-galactosidase, alpha-mannosidase, beta-N-acetylglucosaminidase and alpha-L-fucosidase in mammalian tissues[J]. Biochem J, 1963, 87(2):354-361.
doi: 10.1042/bj0870354 URL |
[16] |
XING H, QIU H, DING X, et al. Clinical performance of α-L-fucosidase for early detection of hepatocellular carcinoma[J]. Biomark Med, 2019, 13(7):545-555.
doi: 10.2217/bmm-2018-0414 pmid: 31140827 |
[17] |
WANG K, GUO W, LI N, et al. Alpha-1-fucosidase as a prognostic indicator for hepatocellular carcinoma followi-ng hepatectomy: a large-scale, long-term study[J]. Br J Cancer, 2014, 110(7):1811-1819.
doi: 10.1038/bjc.2014.102 |
[18] |
YANG Z F, HO D W, NG M N, et al. Significance of CD90+ cancer stem cells in human liver cancer[J]. Cancer Cell, 2008, 13(2):153-166.
doi: 10.1016/j.ccr.2008.01.013 pmid: 18242515 |
[19] |
LIU S, LI N, YU X, et al. Expression of intercellular adhesion molecule 1 by hepatocellular carcinoma stem cells and circulating tumor cells[J]. Gastroenterology, 2013, 144(5):1031-1041.e10.
doi: 10.1053/j.gastro.2013.01.046 pmid: 23376424 |
[20] |
WANG S, ZHANG C, WANG G, et al. Aptamer-mediated transparent-biocompatible nanostructured surfaces for hepotocellular circulating tumor cells enrichment[J]. Theranostics, 2016, 6(11):1877-1886.
doi: 10.7150/thno.15284 pmid: 27570557 |
[21] | QI L N, XIANG B D, WU F X, et al. Circulating tumor cells undergoing emt provide a metric for diagnosis and prognosis of patients with hepatocellular carcinoma[J]. Cancer Res, 2018, 78(16):4731-4744. |
[22] |
SUN Y F, WU L, LIU S P, et al. Dissecting spatial heterogeneity and the immune-evasion mechanism of CTCs by single-cell RNA-seq in hepatocellular carcinoma[J]. Nat Commun, 2021, 12(1):4091.
doi: 10.1038/s41467-021-24386-0 |
[23] |
SAUSEN M, PARPART S, DIAZ L A JR. Circulating tumor DNA moves further into the spotlight[J]. Genome Med, 2014, 6(5):35.
doi: 10.1186/gm552 pmid: 24944584 |
[24] |
VAN DER POL Y, MOULIERE F. Toward the Early Detection of Cancer by Decoding the Epigenetic and Environmental Fingerprints of Cell-Free DNA[J]. Cancer Cell, 2019, 36(4):350-368.
doi: S1535-6108(19)30386-1 pmid: 31614115 |
[25] |
CHEN L, ABOU-ALFA G K, ZHENG B, et al. Genome-scale profiling of circulating cell-free DNA signatures for early detection of hepatocellular carcinoma in cirrhotic patients[J]. Cell Res, 2021, 31(5):589-592.
doi: 10.1038/s41422-020-00457-7 pmid: 33589745 |
[26] |
DING Y, YAO J, WEN M, et al. The potential, analysis and prospect of ctDNA sequencing in hepatocellular carcinoma[J]. PeerJ, 2022, 10:e13473.
doi: 10.7717/peerj.13473 URL |
[27] |
XU R H, WEI W, KRAWCZYK M, et al. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma[J]. Nat Mater, 2017, 16(11):1155-1161.
doi: 10.1038/nmat4997 URL |
[28] |
ZHANG B O, XU C W, SHAO Y, et al. Comparison of droplet digital PCR and conventional quantitative PCR for measuring EGFR gene mutation[J]. Exp Ther Med, 2015, 9(4):1383-1388.
doi: 10.3892/etm.2015.2221 URL |
[29] |
HA M, KIM V N. Regulation of microRNA biogenesis[J]. Nat Rev Mol Cell Biol, 2014, 15(8):509-524.
doi: 10.1038/nrm3838 |
[30] |
LU J, GETZ G, MISKA E A, et al. MicroRNA expression profiles classify human cancers[J]. Nature, 2005, 435(7043):834-838.
doi: 10.1038/nature03702 |
[31] |
CHEN X, BA Y, MA L, et al. Characterization of micro-RNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases[J]. Cell Res, 2008, 18(10):997-1006.
doi: 10.1038/cr.2008.282 |
[32] |
FORNARI F, GRAMANTIERI L, GIOVANNINI C, et al. MiR-122/cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells[J]. Cancer Res, 2009, 69(14):5761-5767.
doi: 10.1158/0008-5472.CAN-08-4797 pmid: 19584283 |
[33] |
COULOUARN C, FACTOR V M, ANDERSEN J B, et al. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties[J]. Oncogene, 2009, 28(40):3526-3536.
doi: 10.1038/onc.2009.211 pmid: 19617899 |
[34] |
ASHMAWY A M, ELGESHY K M, ABDEL SALAM E T, et al. Crosstalk between liver-related microRNAs and Wnt/β-catenin pathway in hepatocellular carcinoma patients[J]. Arab J Gastroenterol, 2017, 18(3):144-150.
doi: S1687-1979(17)30074-6 pmid: 28958640 |
[35] |
ZHOU S J, LIU F Y, ZHANG A H, et al. MicroRNA-199b-5p attenuates TGF-β1-induced epithelial-mesenchymal transition in hepatocellular carcinoma[J]. Br J Cancer, 2017, 117(2):233-244.
doi: 10.1038/bjc.2017.164 URL |
[36] |
YAN X L, JIA Y L, CHEN L, et al. Hepatocellular carcinoma-associated mesenchymal stem cells promote hepatocarcinoma progression: role of the S100A4-miR155-SOCS1-MMP9 axis[J]. Hepatology, 2013, 57(6):2274-2286.
doi: 10.1002/hep.26257 URL |
[37] |
MORISHITA A, OURA K, TADOKORO T, et al. Micro-RNAs in the pathogenesis of hepatocellular carcinoma: a review[J]. Cancers (Basel), 2021, 13(3):514.
doi: 10.3390/cancers13030514 URL |
[38] |
CALLEGARI E, GRAMANTIERI L, DOMENICALI M, et al. MicroRNAs in liver cancer: a model for investiga-ting pathogenesis and novel therapeutic approaches[J]. Cell Death Differ, 2015, 22(1):46-57.
doi: 10.1038/cdd.2014.136 |
[39] | ZHANG T, YANG Z, KUSUMANCHI P, et al. Critical role of microRNA-21 in the pathogenesis of liver diseases[J]. Front Med (Lausanne), 2020, 7:7. |
[40] |
WANG C, WANG X, SU Z, et al. MiR-25 promotes hepatocellular carcinoma cell growth, migration and invasion by inhibiting RhoGDI[J]. Oncotarget, 2015, 6(34):36231-36244.
doi: 10.18632/oncotarget.v6i34 URL |
[41] |
TANG H, LI R P, LIANG P, et al. miR-125a inhibits the migration and invasion of liver cancer cells via suppression of the PI3K/AKT/mTOR signaling pathway[J]. Oncol Lett, 2015, 10(2):681-686.
pmid: 26622553 |
[42] |
COPPOLA N, DE STEFANO G, PANELLA M, et al. Lowered expression of microRNA-125a-5p in human hepatocellular carcinoma and up-regulation of its oncogenic targets sirtuin-7, matrix metalloproteinase-11, and c-Raf[J]. Oncotarget, 2017, 8(15):25289-25299.
doi: 10.18632/oncotarget.15809 pmid: 28445974 |
[43] |
BI Q, TANG S, XIA L, et al. Ectopic expression of MiR-125a inhibits the proliferation and metastasis of hepatocellular carcinoma by targeting MMP11 and VEGF[J]. PLoS One, 2012, 7(6):e40169.
doi: 10.1371/journal.pone.0040169 URL |
[44] |
CHANG R M, XIAO S, LEI X, et al. miRNA-487a promotes proliferation and metastasis in hepatocellular carcinoma[J]. Clin Cancer Res, 2017, 23(10):2593-2604.
doi: 10.1158/1078-0432.CCR-16-0851 URL |
[45] |
BAO L, ZHANG M, HAN S, et al. MicroRNA-500a promotes the progression of hepatocellular carcinoma by post-transcriptionally targeting BID[J]. Cell Physiol Biochem, 2018, 47(5):2046-2055.
doi: 10.1159/000491472 pmid: 29969781 |
[46] |
GUO Y, CHEN L, SUN C, et al. MicroRNA-500a promotes migration and invasion in hepatocellular carcinoma by activating the Wnt/β-catenin signaling pathway[J]. Biomed Pharmacother, 2017, 91:13-20.
doi: S0753-3322(17)30210-X pmid: 28437633 |
[47] |
ZHANG Y, ZHANG D, JIANG J, et al. Loss of miR-638 promotes invasion and epithelial-mesenchymal transition by targeting SOX2 in hepatocellular carcinoma[J]. Oncol Rep, 2017, 37(1):323-332.
doi: 10.3892/or.2016.5273 pmid: 27878280 |
[48] | DING D, ZHANG Y, YANG R, et al. miR-940 suppresses tumor cell invasion and migration via regulation of CXCR2 in hepatocellular carcinoma[J]. Biomed Res Int, 2016, 2016:7618342. |
[49] |
LIU A M, YAO T J, WANG W, et al. Circulating miR-15b and miR-130b in serum as potential markers for detecting hepatocellular carcinoma: a retrospective cohort study[J]. BMJ Open, 2012, 2(2):e000825.
doi: 10.1136/bmjopen-2012-000825 URL |
[50] |
AMR K S, ELMAWGOUD ATIA H A, ELAZEEM ELBNHAWY R A, et al. Early diagnostic evaluation of miR-122 and miR-224 as biomarkers for hepatocellular carcinoma[J]. Genes Dis, 2017, 4(4):215-221.
doi: 10.1016/j.gendis.2017.10.003 pmid: 30258925 |
[51] |
XU J, WU C, CHE X, et al. Circulating microRNAs, miR-21, miR-122, and miR-223, in patients with hepatocellular carcinoma or chronic hepatitis[J]. Mol Carcinog, 2011, 50(2):136-142.
doi: 10.1002/mc.20712 URL |
[52] |
KALLURI R, LEBLEU V S. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478):eaau6977.
doi: 10.1126/science.aau6977 URL |
[53] |
NABET B Y, QIU Y, SHABASON J E, et al. Exosome RNA unshielding couples stromal activation to pattern recognition receptor signaling in cancer[J]. Cell, 2017, 170(2):352-366.e13.
doi: S0092-8674(17)30715-8 pmid: 28709002 |
[54] |
THÉRY C. Cancer: Diagnosis by extracellular vesicles[J]. Nature, 2015, 523(7559):161-162.
doi: 10.1038/nature14626 |
[55] |
LU Y, DUAN Y, XU Q, et al. Circulating exosome-derived bona fide long non-coding RNAs predicting the occurrence and metastasis of hepatocellular carcinoma[J]. J Cell Mol Med, 2020, 24(2):1311-1318.
doi: 10.1111/jcmm.14783 pmid: 31811749 |
[56] |
CONIGLIARO A, COSTA V, LO DICO A, et al. CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA[J]. Mol Cancer, 2015, 14:155.
doi: 10.1186/s12943-015-0426-x pmid: 26272696 |
[57] |
SUN N, LEE Y T, ZHANG R Y, et al. Purification of HCC-specific extracellular vesicles on nanosubstrates for early HCC detection by digital scoring[J]. Nat Commun, 2020, 11(1):4489.
doi: 10.1038/s41467-020-18311-0 pmid: 32895384 |
[58] |
LLOVET J M, KELLEY R K, VILLANUEVA A, et al. Hepatocellular carcinoma[J]. Nat Rev Dis Primers, 2021, 7(1):6.
doi: 10.1038/s41572-020-00240-3 pmid: 33479224 |
[59] |
SCHULZE K, IMBEAUD S, LETOUZÉ E, et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets[J]. Nat Genet, 2015, 47(5):505-511.
doi: 10.1038/ng.3252 pmid: 25822088 |
[60] |
GUICHARD C, AMADDEO G, IMBEAUD S, et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma[J]. Nat Genet, 2012, 44(6):694-698.
doi: 10.1038/ng.2256 pmid: 22561517 |
[61] |
LIU X, XIAO C, YUE K, et al. Identification of multi-o-mics biomarkers and construction of the novel prognostic model for hepatocellular carcinoma[J]. Sci Rep, 2022, 12(1):12084.
doi: 10.1038/s41598-022-16341-w |
[1] | 王书奎, 顾心亮. tsRNA作为肿瘤诊断和预后标志物的研究进展[J]. 诊断学理论与实践, 2023, 22(05): 413-420. |
[2] | 吴冬梅, 吴丽莉, 陈佳, 刘坤. 淋巴上皮样肝细胞肝癌一例报告附文献复习[J]. 诊断学理论与实践, 2021, 20(05): 498-501. |
[3] | 张华, 陆炜, 杨承翌, 项明洁. 血清人衰老关键蛋白1检测对结肠直肠癌的诊断和预后价值[J]. 诊断学理论与实践, 2021, 20(05): 462-465. |
[4] | 苏长青. 从基础研究到临床转化应用谈肝癌的诊治进展[J]. 诊断学理论与实践, 2021, 20(05): 427-433. |
[5] | 汪楠, 郝风节, 王俊青. 肝细胞多倍体发生机制及其与肝细胞癌形成的相关性研究进展[J]. 诊断学理论与实践, 2020, 19(06): 618-621. |
[6] | 朱迪, 朱晓娜, 杨烁, 何平, 沈少明, 余韵. 酸性亮氨酸核磷酸蛋白32B 在肝癌组织表达增强并促进肝癌细胞生长的研究[J]. 诊断学理论与实践, 2019, 18(2): 170-176. |
[7] | 蔡业冰, 任家俊, 郝风节, 叶枫, 杨宇尘, 龚笑勇, 马迪, 王俊青, 陈拥军. 人类假基因在以肝癌为主的肿瘤中的作用及研究进展[J]. 诊断学理论与实践, 2019, 18(05): 590-594. |
[8] | 娄加陶, 张宸梓. 外泌体的检测及临床应用[J]. 诊断学理论与实践, 2018, 17(02): 141-146. |
[9] | 朱巍巍, 万颖蕾, 刘锦燕, 张华, 陈华, 项明洁. 内毒素的检测方法与临床应用进展[J]. 诊断学理论与实践, 2017, 16(06): 668-671. |
[10] | 董振阳, 贾高臻, 高旭, 许传亮, 杨成华,. 前列腺癌肿瘤标志物的研究现况及进展[J]. 诊断学理论与实践, 2016, 15(02): 195-198. |
[11] | 张海晨, 陈佳, 宋云霄, 蔡海斌, 丰睿捷, 倪培华, 刘湘帆,. 肝癌高表达转录本调控microRNA613促进肝癌细胞增殖的机制研究[J]. 诊断学理论与实践, 2015, 14(06): 533-538. |
[12] | 俞庆宪, 吴云林,. 74例老年进展期胃癌营养状况评估与研究[J]. 诊断学理论与实践, 2014, 13(06): 620-621. |
[13] | 李晓雅, 苏长青,. 蛋白激酶B活化诱导骨桥蛋白表达与肝癌细胞骨转移间的关系[J]. 诊断学理论与实践, 2013, 12(06): 600-605. |
[14] | 程铖, 周军, 季君, 王坤, 刘艳, 殷月鹏, 高春芳,. 原发性肝细胞肝癌患者血清CTGF测定的临床意义[J]. 诊断学理论与实践, 2013, 12(05): 545-548. |
[15] | 何沂峰, 王新文, 陈克敏,. 肺实质含血量的异常改变及其测量方法的相关进展[J]. 诊断学理论与实践, 2013, 12(05): 564-566. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||