外科理论与实践 ›› 2023, Vol. 28 ›› Issue (05): 409-414.doi: 10.16139/j.1007-9610.2023.05.03
收稿日期:
2023-07-26
出版日期:
2023-09-25
发布日期:
2024-01-04
通讯作者:
罗哲
E-mail:luo.zhe@zs-hospital.sh.cn
LIU Hua, LUO Minghao, TU Guowei, LUO Zhe()
Received:
2023-07-26
Online:
2023-09-25
Published:
2024-01-04
摘要:
心脏外科围术期重症监护的快速发展显著提高了接受心脏大血管手术病人的预后。在血流动力学领域,除传统的各类动脉导管和中心静脉导管,热稀释法与超声心动图正逐步成为常规的血流动力学监测技术,但其临床价值有待进一步研究。同时,优化组织微循环,以满足机体的氧气和代谢需求,成为血流动力学复苏的目标。针对心脏外科围术期V-A 体外膜肺氧合的管理依赖于持续的血流动力学监测。容量管理、血管活性药物及舒张药物、强心药等药物治疗仍是重点。此外,多种机械循环辅助装置为终末期心力衰竭和严重心肺衰竭的病人带来不同的治疗方式和希望。
中图分类号:
刘华, 罗明豪, 屠国伟, 罗哲. 心脏外科围术期的重症监护[J]. 外科理论与实践, 2023, 28(05): 409-414.
LIU Hua, LUO Minghao, TU Guowei, LUO Zhe. Perioperative intensive care for cardiac surgery patients[J]. Journal of Surgery Concepts & Practice, 2023, 28(05): 409-414.
[1] |
TEBOUL J L, SAUGEL B, CECCONI M, et al. Less invasive hemodynamic monitoring in critically ill patients[J]. Intensive Care Med, 2016, 42(9):1350-1359.
doi: 10.1007/s00134-016-4375-7 URL |
[2] |
MONNET X, MARIK P E, TEBOUL J L. Prediction of fluid responsiveness: an update[J]. Ann Intensive Care, 2016, 6(1):111.
doi: 10.1186/s13613-016-0216-7 pmid: 27858374 |
[3] |
SAUGEL B, KOUZ K, SCHEEREN T W L, et al. Cardiac output estimation using pulse wave analysis-physiology, algorithms, and technologies: a narrative review[J]. Br J Anaesth, 2021, 126(1):67-76.
doi: 10.1016/j.bja.2020.09.049 pmid: 33246581 |
[4] |
DE BACKER D, AISSAOUI N, CECCONI M, et al. How can assessing hemodynamics help to assess volume status?[J]. Intensive Care Med, 2022, 48(10):1482-1494.
doi: 10.1007/s00134-022-06808-9 pmid: 35945344 |
[5] |
SAUGEL B, MALBRAIN M L, PEREL A. Hemodynamic monitoring in the era of evidence-based medicine[J]. Crit Care, 2016, 20(1):401.
doi: 10.1186/s13054-016-1534-8 URL |
[6] |
CECCONI M, DE BACKER D, ANTONELLI M, et al. Consensus on circulatory shock and hemodynamic monitoring. Task Force of the European Society of Intensive Care Medicine[J]. Intensive Care Med, 2014, 40(12):1795-1815.
doi: 10.1007/s00134-014-3525-z pmid: 25392034 |
[7] |
JUHL-OLSEN P, SMITH S H, GREJS A M, et al. Automated echocardiography for measuring and tracking cardiac output after cardiac surgery: a validation study[J]. J Clin Monit Comput, 2020, 34(5):913-922.
doi: 10.1007/s10877-019-00413-w |
[8] |
FLICK M, BERGHOLZ A, SIERZPUTOWSKI P, et al. What is new in hemodynamic monitoring and management?[J]. J Clin Monit Comput, 2022, 36(2):305-313.
doi: 10.1007/s10877-022-00848-8 pmid: 35394584 |
[9] |
BRUNO R R, WOLLBORN J, FENGLER K, et al. Direct assessment of microcirculation in shock: a randomized-controlled multicenter study[J]. Intensive Care Med, 2023, 49(6):645-655.
doi: 10.1007/s00134-023-07098-5 pmid: 37278760 |
[10] |
DURANTEAU J, DE BACKER D, DONADELLO K, et al. The future of intensive care: the study of the microcirculation will help to guide our therapies[J]. Crit Care, 2023, 27(1):190.
doi: 10.1186/s13054-023-04474-x |
[11] |
MERDJI H, LEVY B, JUNG C, et al. Microcirculatory dysfunction in cardiogenic shock[J]. Ann Intensive Care, 2023, 13(1):38.
doi: 10.1186/s13613-023-01130-z pmid: 37148451 |
[12] |
LUO J C, ZHANG J D, ZHAO Q Y, et al. Infrared thermography-based body-surface thermal inhomogeneity monitoring to assess the severity of hypoperfusion in critically ill patients[J]. Shock, 2022, 58(5):366-373.
doi: 10.1097/SHK.0000000000001998 URL |
[13] |
SU Y, LIU K, ZHENG J L, et al. Hemodynamic monitoring in patients with venoarterial extracorporeal membrane oxygenation[J]. Ann Transl Med, 2020, 8(12):792.
doi: 10.21037/atm.2020.03.186 pmid: 32647717 |
[14] |
TSANGARIS A, ALEXY T, KALRA R, et al. Overview of veno-arterial extracorporeal membrane oxygenation (VA-ECMO) support for the management of cardiogenic shock[J]. Front Cardiovasc Med, 2021, 8:686558.
doi: 10.3389/fcvm.2021.686558 URL |
[15] |
VIGNON P, REPESSE X, BEGOT E, et al. Comparison of echocardiographic indices used to predict fluid responsiveness in ventilated patients[J]. Am J Respir Crit Care Med, 2017, 195:1022-1032.
doi: 10.1164/rccm.201604-0844OC URL |
[16] |
LUO J C, SU Y, DONG L L, et al. Trendelenburg maneuver predicts fluid responsiveness in patients on veno-arterial extracorporeal membrane oxygenation[J]. Ann Intensive Care, 2021, 11(1):16.
doi: 10.1186/s13613-021-00811-x |
[17] |
WELKER C C, MIELKE J A R, RAMAKRISHNA H, et al. Levosimendan and low cardiac output after cardiac surgery: analysis of trial data[J]. J Cardiothorac Vasc Anesth, 2023, 37(7):1294-1297.
doi: 10.1053/j.jvca.2023.03.011 URL |
[18] |
LANDONI G, LOMIVOROTOV V V, ALVARO G, et al. Levosimendan for hemodynamic support after cardiac surgery[J]. N Engl J Med, 2017, 376(21):2021-2031.
doi: 10.1056/NEJMoa1616325 URL |
[19] |
STEPHENS R S, WHITMAN G J R. Postoperative critical care of the adult cardiac surgical patient. Part Ⅰ: routine postoperative care[J]. Crit Care Med, 2015, 43:1477-1497.
doi: 10.1097/CCM.0000000000001059 URL |
[20] |
NAGPAL A D, SINGAL R K, ARORA R C, et al. Temporary mechanical circulatory support in cardiac critical care: a state of the art review and algorithm for device selection[J]. Can J Cardiol, 2017, 33:110-118.
doi: S0828-282X(16)31050-9 pmid: 28024549 |
[21] |
KANTROWITZ A, TJΦNNELAND S, FREED P S, et al. Initial clinical experience with intraaortic balloon pumping in cardiogenic shock[J]. JAMA, 1968, 203(2):113-118.
doi: 10.1001/jama.1968.03140020041011 URL |
[22] |
DARRAH W C, SHARPE M D, GUIRAUDON G M, et al. Intraaortic balloon counterpulsation improves right ventricular failure resulting from pressure overload[J]. Ann Thorac Surg, 1997, 64:1718-1723.
pmid: 9436561 |
[23] |
HEUTS S, LORUSSO R, MAURO M, et al. Sheathless versus sheathed intra-aortic balloon pump implantation in patients undergoing cardiac surgery[J]. Am J Cardiol, 2023, 189:86-92.
doi: 10.1016/j.amjcard.2022.11.033 URL |
[24] |
COCHRAN R P, STARKEY T D, PANOS A L, et al. Ambulatory intraaortic balloon pump use as bridge to heart transplant[J]. Ann Thorac Surg, 2002, 74:746-751.
pmid: 12238834 |
[25] |
BROWN M A, SHEIKH F H, AHMED S, et al. Intra-aortic balloon pump as a bridge to durable left ventricular assist device[J]. J Am Heart Assoc, 2021, 10(15):E019376.
doi: 10.1161/JAHA.120.019376 URL |
[26] |
THIELE H, ZEYMER U, THELEMANN N, et al. Intraaortic balloon pump in cardiogenic shock complicating acute myocardial infarction: long-term 6-year outcome of the randomized IABP-SHOCK Ⅱ Trial[J]. Circulation, 2019, 139(3):395-403.
doi: 10.1161/CIRCULATIONAHA.118.038201 URL |
[27] |
ANDERSON M B, GOLDSTEIN J, MILANO C, et al. Benefits of a novel percutaneous ventricular assist device for right heart failure: the prospective RECOVER RIGHT study of the Impella RP device[J]. J Heart Lung Transplant, 2015, 34(12):1549-1560.
doi: 10.1016/j.healun.2015.08.018 URL |
[28] |
PAPOLOS A I, BARNETT C F, TULI A, et al. Impella management for the cardiac intensivist[J]. ASAIO, 2022, 68(6):753-758.
doi: 10.1097/MAT.0000000000001680 URL |
[29] |
HILL J D, O’BRIEN T G, MURRAY J J, et al. Prolonged extracorporeal oxygenation for acute post-traumatic respiratory failure (shock-lung syndrome). Use of the Bramson membrane lung[J]. N Engl J Med, 1972, 286:629-634.
doi: 10.1056/NEJM197203232861204 URL |
[30] |
WELKER C C, HUANG J, BOSWELL M R, et al. Left ventricular decompression in VA-ECMO: analysis of techniques and outcomes[J]. J cardiothorac Vasc Anesth, 2022, 36(11):4192-4197.
doi: 10.1053/j.jvca.2022.07.024 pmid: 35965232 |
[31] |
SCHRAGE B, BECHER P M, BERNHARDT A, et al. Left ventricular unloading is associated with lower morta-lity in patients with cardiogenic shock treated with venoarterial extracorporeal membrane oxygenation: results from an international, multicenter cohort study[J]. Circulation, 2020, 142(22):2095-2106.
doi: 10.1161/CIRCULATIONAHA.120.048792 URL |
[32] |
MONLINA E J, SHAH P, KIERNAN M S, et al. The so-ciety of thoracic surgeons intermacs 2020 annual report[J]. Ann Thorac Surg, 2021, 111:778-802.
doi: 10.1016/j.athoracsur.2020.12.038 URL |
[33] |
MEHRA M R, GOLDSTEIN D J, CLEVELAND J C, et al. Five-year outcomes in patients with fully magnetically levitated vs axial-flow left ventricular assist devices in the MOMENTUM 3 randomized trial[J]. JAMA, 2022, 328(12):1233-1242.
doi: 10.1001/jama.2022.16197 URL |
[34] | VARSHNEY A S, DEFILIPPIS E M, COWGER J A, et al. Trends and outcomes of left ventricular assist device therapy[J]. JACC, 2022, 79(11):1092-1107. |
[1] | 吴辉,富荣昌,杨晓玉,李现政,王召耀. 三种不同血液粘度模型中分叉血流的数值研究[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 450-. |
[2] | 宋震, 林广贤, 范飞. 皮瓣血流监测方法的研究进展 [J]. 组织工程与重建外科杂志, 2023, 19(1): 83-. |
[3] | 邓羽霄, 赵贤元, 皋源. 成人肝移植术后早期肝外脏器功能管理策略[J]. 外科理论与实践, 2023, 28(05): 415-419. |
[4] | 谭若铭, 瞿洪平. 外科病人耐药菌感染的防控[J]. 外科理论与实践, 2023, 28(05): 420-424. |
[5] | 毕礼明, 王朝晖. 糖尿病肾病发病机制研究进展[J]. 内科理论与实践, 2023, 18(03): 201-205. |
[6] | 崔佳嵩, 张恩铭, 王苏醒, 甘露, 戴正悦, 方琼. 上海市参与新型冠状病毒肺炎危重症护理护士胜任力和应对能力现状分析[J]. 内科理论与实践, 2023, 18(01): 43-47. |
[7] | 李丽, 朱咏臻, 周敏, 钱嘉, 方丽莉. 2017年至2021年上海嘉定区某医院多重耐药菌分析[J]. 诊断学理论与实践, 2022, 21(01): 62-67. |
[8] | 张斌, 吴志勇. 门静脉高压症食管胃底静脉曲张出血的个体化治疗和手术方式选择[J]. 外科理论与实践, 2021, 26(03): 185-188. |
[9] | 李艳秀, 朱恩泽, 周春雷, 刘云, 左祥荣, 李京杭, 曹权. 血管加压素与重症患者预后的相关性研究[J]. 内科理论与实践, 2021, 16(03): 183-187. |
[10] | 罗蒙, 李泓杰, 郑磊. 肝硬化门静脉高压症发病机制的研究现状[J]. 外科理论与实践, 2021, 26(03): 195-198. |
[11] | 罗颖, 钱洁敏, 陈晓薇, 马海燕, 许萍, 刘琳娜, 倪强. 气腹及病人体位对腹腔镜胆囊切除术血流动力学的影响[J]. 外科理论与实践, 2019, 24(01): 70-74. |
[12] | 李梅玲, 李磊, 张如愿, 刘嘉琳, 瞿洪平. 微量元素补充对术后脓毒症病人炎症反应的影响[J]. 外科理论与实践, 2018, 23(06): 533-538. |
[13] | 崔娓, 叶照君, 陶伟平, 张弛,. 术前饮用糖类清饮对全身麻醉诱导后血液动力学的影响[J]. 外科理论与实践, 2016, 21(04): 336-337. |
[14] | 辛敏强,栾杰,穆大力. 小型猪静脉增流DIEP皮瓣的血流动力学研究[J]. 组织工程与重建外科杂志, 2015, 11(3): 133-135. |
[15] | 刘华, 关韶峰, 方唯一, 袁方, 李红,. 脑钠肽和心阻抗图参数在缺血性心肌病患者中的相关性分析[J]. 诊断学理论与实践, 2015, 14(02): 175-177. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||