外科理论与实践 ›› 2019, Vol. 24 ›› Issue (05): 470-474.doi: 10.16139/j.1007-9610.2019.05.019
黄轶洲 综述, 钟鸣 审校
收稿日期:
2018-09-03
出版日期:
2019-10-05
发布日期:
2019-10-05
通讯作者:
钟鸣,E-mail: drzhongming1966@163.com
基金资助:
Received:
2018-09-03
Online:
2019-10-05
Published:
2019-10-05
中图分类号:
黄轶洲, 钟鸣. 结肠直肠癌B7/CD28家族的研究进展[J]. 外科理论与实践, 2019, 24(05): 470-474.
[1] Weitz J, Koch M, Debus J, et al.Colorectal cancer[J].Lancet,2005,365(9454):153-165. [2] Poirier N, Blancho G, Vanhove B.A more selective costimulatory blockade of the CD28-B7 pathway[J]. Transpl Int,2011,24(1):2-11. [3] Maj T, Wei S, Welling T, et al.T cells and costimulation in cancer[J]. Cancer J,2013,19(6):473-482. [4] Zou W, Wolchok JD, Chen L. PD-L1(B7-H1) andPD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers,combinations[J]. Sci Transl Med,2016,8(328):328rv4. [5] McDermott DF, Atkins MB. PD-1 as a potential target in cancer therapy[J]. Cancer Med,2013,2(5):662-673. [6] Taube JM, Klein A, Brahmer JR, et al.Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy[J]. Clin Cancer Res,2014,20(19):5064-5074. [7] Carter L, Fouser LA, Jussif J, et al.PD-1:PD-L inhibitory pathway affects both CD4(+) and CD8(+) T cells and is overcome by IL-2[J]. Eur J Immunol,2002,32(3):634-643. [8] Ribas A, Wolchok JD.Cancer immunotherapy using checkpoint blockade[J]. Science,2018,359(6382):1350-1355. [9] Shi SJ, Wang LJ, Wang GD, et al.B7-H1 expression is associated with poor prognosis in colorectal carcinoma and regulates the proliferation and invasion of HCT116 colorectal cancer cells[J]. PLoS One,2013,8(10):e76012. [10] Li Y, Liang L, Dai W, et al.Prognostic impact of programed cell death-1 (PD-1) and PD-ligand 1 (PD-L1) expression in cancer cells and tumor infiltrating lymphocytes in colorectal cancer[J]. Mol Cancer,2016,15(1):55. [11] Wang HB, Yao H, Li CS, et al.Rise of PD-L1 expression during metastasis of colorectal cancer: Implications for immunotherapy[J]. J Dig Dis,2017,18(10):574-581. [12] Kollmann D, Schweiger T, Schwarz S, et al.PD1-positive tumor-infiltrating lymphocytes are associated with poor clinical outcome after pulmonary metastasectomy for co-lorectal cancer[J]. Oncoimmunology,2017,6(9):e1331194. [13] Hamada T, Cao Y, Qian ZR, et al.Aspirin use and co-lorectal cancer survival according to tumor CD274 (programmed cell death 1 ligand 1) expression status[J]. J Clin Oncol,2017,35(16):1836-1844. [14] Le DT, Uram JN, Wang H, et al.PD-1 blockade in tumors with mismatch-repair deficiency[J]. N Engl J Med,2015,372(26):2509-2520. [15] Pardoll DM.The blockade of immune checkpoints in cancer immunotherapy[J]. Nat Rev Cancer,2012,12(4):252-264. [16] Wang Y, Wang X, Zhao R.The association of CTLA-4 A49G polymorphism with colorectal cancer risk in a Chinese Han population[J]. Int J Immunogenet,2015,42(2):93-99. [17] Waterhouse P, Penninger JM, Timms E, et al.Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4[J]. Science,1995,270(5238):985-988. [18] Leach DR, Krummel MF, Allison JP.Enhancement of anti-tumor immunity by CTLA-4 blockade[J]. Science,1996, 271(5256):1734-1736. [19] Jure-Kunkel M, Masters G, Girit E, et al.Synergy between chemotherapeutic agents and CTLA-4 blockade in preclinical tumor models[J]. Cancer Immunol Immunother,2013,62(9):1533-1545. [20] Dewan MZ, Galloway AE, Kawashima N, et al.Fractio-nated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody[J]. Clin Cancer Res,2009,15(17):5379-5388. [21] Kocak E, Lute K, Chang X et al. Combination therapy with anti-CTL antigen-4 and anti-4-1BB antibodies enhances cancer immunity and reduces autoimmunity[J]. Cancer Res,2006,66(14):7276-7284. [22] Chung KY, Gore I, Fong L, et al.Phase Ⅱ study of the anti-cytotoxic T-lymphocyte-associated antigen 4 monoclonal antibody, tremelimumab, in patients with refractory metastatic colorectal cancer[J]. J Clin Oncol,2010,28(21):3485-3490. [23] Hutloff A, Dittrich AM, Beier KC, et al.ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28[J]. Nature,1999,397(6716):263-266. [24] Carthon BC, Wolchok JD, Yuan J, et al.Preoperative CTLA-4 blockade: tolerability and immune monitoring in the setting of a presurgical clinical trial[J]. Clin Cancer Res,2010,16(10):2861-2871. [25] Fu T, He Q, Sharma P.The ICOS/ICOSL pathway is required for optimal antitumor responses mediated by anti-CTLA-4 therapy[J]. Cancer Res,2011,71(16):5445-5454. [26] Zhang Y, Luo Y, Qin SL, et al.The clinical impact of ICOS signal in colorectal cancer patients[J]. Oncoimmunology,2016,5(5):e1141857. [27] Picarda E, Ohaegbulam KC, Zang X.Molecular pathways: targeting B7-H3(CD276) for human cancer immunotherapy[J]. Clin Cancer Res,2016,22(14):3425-3431. [28] Nagashima O, Harada N, Usui Y, et al.B7-H3 contributes to the development of pathogenic Th2 cells in a murine model of asthma[J]. J Immunol,2008,181(6):4062-4071. [29] Leitner J, Klauser C, Pickl WF, et al.B7-H3 is a potent inhibitor of human T-cell activation: No evidence for B7-H3 and TREML2 interaction[J]. Eur J Immunol,2009,39(7):1754-1764. [30] Chapoval AI, Ni J, Lau JS, et al.B7-H3: a costimulatory molecule for T cell activation and IFN-gamma production[J]. Nat Immunol,2001,2(3):269-274. [31] Ingebrigtsen VA, Boye K, Tekle C, et al.B7-H3 expression in colorectal cancer: nuclear localization strongly predicts poor outcome in colon cancer[J]. Int J Cancer,2012,131(11):2528-2536. [32] Mao Y, Chen L, Wang F, et al.Cancer cell-expressed B7-H3 regulates the differentiation of tumor-associated macrophages in human colorectal carcinoma[J]. Oncol Lett,2017,14(5):6177-6183. [33] Jiang B, Zhang T, Liu F, et al.The co-stimulatory molecule B7-H3 promotes the epithelial-mesenchymal transition in colorectal cancer[J]. Oncotarget,2016,7(22):31755-31771. [34] Zhang P, Chen Z, Ning K, et al.Inhibition of B7-H3 reverses oxaliplatin resistance in human colorectal cancer cells[J]. Biochem Biophys Res Commun,2017,490(3):1132-1138. [35] Sun J, Chen LJ, Zhang GB, et al.Clinical significance and regulation of the costimulatory molecule B7-H3 in human colorectal carcinoma[J]. Cancer Immunol Immunother,2010,59(8):1163-1171. [36] Loo D, Alderson RF, Chen FZ, et al.Development of an Fc-enhanced anti-B7-H3 monoclonal antibody with potent antitumor activity[J]. Clin Cancer Res,2012,18(14):3834-3845. [37] Powderly J, Gregory C, Keith F, et al.Interim results of an ongoing phase Ⅰ, dose escalation study of MGA271 (Fc-optimized humanized anti-B7-H3 monoclonal antibody) in patients with refractory B7-H3-expressing neoplasms or neoplasms whose vasculature expresses B7-H3[J]. J Immuno Ther Cancer,2015,3(Suppl 2):O8. [38] Prasad DV, Richards S, Mai XM, et al.B7S1, a novel B7 family member that negatively regulates T cell activation[J]. Immunity,2003,18(6):863-873. [39] Sica GL, Choi IH, Zhu G, et al.B7-H4, a molecule of the B7 family, negatively regulates T cell immunity[J]. Immunity,2003,18(6):849-861. [40] Zhou X, Mao Y, Zhu J, et al.TGF-β1 promotes colorectal cancer immune escape by elevating B7-H3 and B7-H4 via the miR-155/miR-143 axis[J]. Oncotarget,2016,7(41):67196-67211. [41] Chen C, Qu QX, Xie F, et al.Analysis of B7-H4 expression in metastatic pleural adenocarcinoma and therapeutic potential of its antagonists[J]. BMC Cancer,2017,17(1):652. [42] Wang L, Rubinstein R, Lines JL, et al.VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses[J]. J Exp Med,2011,208(3):577-592. [43] Lines JL, Sempere LF, Broughton T, et al.VISTA is a novel broad-spectrum negative checkpoint regulator for cancer immunotherapy[J]. Cancer Immunol Res,2014,2(6):510-517. [44] Brandt CS, Baratin M, Yi EC, et al.The B7 family member B7-H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans[J]. J Exp Med,2009,206(7):1495-1503. [45] Chen Y, Mo J, Jia X, et al.The B7 family member B7-H6: a new bane of tumor[J]. Pathol Oncol Res,2018,24(4):717-721. [46] Janakiram M, Chinai JM, Fineberg S, et al.Expression, clinical significance, and receptor identification of the newest B7 family member HHLA2 protein[J]. Clin Cancer Res,2015,21(10):2359-2366. |
[1] | 包全, 邢宝才. 复杂双叶多发性结肠直肠癌肝转移外科治疗策略[J]. 外科理论与实践, 2022, 27(02): 128-130. |
[2] | 宗春燕,沈键锋. 免疫治疗能否治愈肿瘤?[J]. 上海交通大学学报, 2021, 55(Sup.1): 53-54. |
[3] | 刘诗光, 赵敬坤, 陆爱国, 毛志海. 趋化因子CXCL5和程序性死亡配体 1在结肠直肠癌组织的表达与病人预后的关系[J]. 外科理论与实践, 2021, 26(6): 543-549. |
[4] | 杨哲宇, 陆骋豪(综述), 蔡伟(审校). 浆细胞样树突状细胞与肿瘤免疫研究的新进展[J]. 外科理论与实践, 2021, 26(6): 568-572. |
[5] | 张华, 陆炜, 杨承翌, 项明洁. 血清人衰老关键蛋白1检测对结肠直肠癌的诊断和预后价值[J]. 诊断学理论与实践, 2021, 20(05): 462-465. |
[6] | 杨盈赤, 宋建宁, 张忠涛. 中国腹腔镜结肠直肠手术的回顾与展望——基于手术病例登记研究和数据库建立的思考[J]. 外科理论与实践, 2021, 26(04): 277-280. |
[7] | 顾晋. 局部晚期结肠直肠癌治疗和联合脏器切除[J]. 外科理论与实践, 2021, 26(04): 290-296. |
[8] | 吴春晓, 龚杨明, 顾凯, 庞怡, 鲍萍萍, 王春芳, 施亮, 向詠梅, 窦剑明, 付晨, 施燕. 2016年上海市结肠直肠癌发病和死亡情况与2002—2016年间的变化趋势分析[J]. 外科理论与实践, 2021, 26(04): 325-335. |
[9] | 蔡三军. 结肠直肠癌诊治的思考[J]. 外科理论与实践, 2021, 26(04): 297-299. |
[10] | 张弢, 叶枫, 赵任. 结肠直肠癌的微创手术——在工具和价值间的不断平衡优化[J]. 外科理论与实践, 2021, 26(04): 300-304. |
[11] | 杨飖, 傅传刚. NOSES在结肠直肠癌手术中的应用现状与展望[J]. 外科理论与实践, 2021, 26(04): 305-311. |
[12] | 王常刚, 刘坤, 冯浩然, 蒋奕玫, 施毅卿, 陈献则, 宋子甲, 李军, 李佑, 蔡东莉, 赵任. 结肠直肠癌B7S1表达与免疫浸润的关系[J]. 外科理论与实践, 2021, 26(04): 336-342. |
[13] | 茅届齐, 徐多刚, 张米粒, 肖蕴誉, 明旭, 李雨哲, 曹灿, 于亮, 李继坤. 结肠直肠癌病人D-二聚体升高的研究[J]. 外科理论与实践, 2021, 26(04): 361-366. |
[14] | 程国柱, 蔡国响. 结肠直肠癌腹膜转移的腹腔药物治疗研究[J]. 外科理论与实践, 2021, 26(01): 34-37. |
[15] | 林松斌, 冯青阳, 许剑民. KRAS基因突变类型预测结肠直肠癌根治术后异时性远处转移[J]. 外科理论与实践, 2021, 26(01): 66-71. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||