Journal of Surgery Concepts & Practice ›› 2021, Vol. 26 ›› Issue (02): 179-182.doi: 10.16139/j.1007-9610.2021.02.018
• Review • Previous Articles
CHEN Xuemei, CHEN Yuanyang, ZHOU Quanhong()
Received:
2020-10-09
Online:
2021-03-25
Published:
2022-07-27
Contact:
ZHOU Quanhong
E-mail:zhouanny@hotmail.com
CLC Number:
CHEN Xuemei, CHEN Yuanyang, ZHOU Quanhong. Research on microgravity which affects thyroid tumor[J]. Journal of Surgery Concepts & Practice, 2021, 26(02): 179-182.
参考文献 | 生物学表型 | 细胞系 | 结果 |
---|---|---|---|
张倍宁[ | 增殖能力(抑制) | FRTL-5 | 细胞周期蛋白:Cyclin D1、Cyclin B1↓ |
Warnke等[ | 细胞外基质和细胞骨架 | Nthy-ori3-1 | TUBB、ACTB、PFN-1、PKC、ERK1、ERK2、Casp9、OSP↑, VEGF↓ |
Grimm等[ | 细胞活性(抑制)和细胞凋亡(促进) | ML-1 | 促进凋亡:PARP、p53和Bax↑,抑制凋亡:BCL-2↓ |
Riwaldt等[ | 细胞外基质和细胞骨架 | UCLA RO82-W-1 | VEGFD、VEGFA、MSN、MMP3、CAV1、ACTB、ACTA2、KRT8、TUBB↑,MMP9、CTGF、MCP1↓ |
Kopp等[ | 细胞外基质和细胞骨架 | FTC-133 | ACTB、TUBB、EGF、CTGF、VEGF、ERK1、ERK2↑, CAV1、CAV2、CTGF、PRKCA、MMP3↓ |
Ulbrich等[ | 细胞外基质和细胞骨架 | ML-1 | PXN、VCL、PTK2、F-actin、ACTB、KRT80、OPN、FN↑,COL4A5、LIMA1、MTSS1↓ |
参考文献 | 细胞系 | 干预条件 | 信号通路 |
---|---|---|---|
Melnik等[ | FTC-133 | RPM | 地塞米松可通过Wnt/β-catenin信号通路影响模拟微重力下甲状腺癌细胞球体的形成 |
Zhao等[ | BL6-10 | FRC | FAK/RhoA调节的mTORC1途径抑制细胞增殖/转移 |
Deng等[ | U251 | SM-31 随机定位器 | 抑制FAK/RhoA/Rock和FAK / Nek2信号通路 |
Zhao等[ | BL6-10 | RPM | 通过对Uev1A/TICAM/TRAF/NF-κB调节的细胞凋亡以及p53/PCNA-和ATM/ATR-Chk1/2控制的DNA损伤应答途径的联合调节来促进细胞凋亡应答 |
Lin等[ | NCSCs | RCCS | ↑CXCR4表达和RhoA-ROCK1-p38 MAPK-p53信号转导破坏大鼠NCSC的细胞骨架并增加其凋亡 |
韩标等[ | MC3T3-E1 | RCCS | 激活NF-κB通路来调节MC3T3-E1细胞的分化 |
参考文献 | 细胞系 | 干预条件 | 结果 |
---|---|---|---|
Warnke等[ | FTC-133 | RPM(3 d) | 成球时:CAV1、CTGF↓ |
Riwaldt等[ | UCLA RO82-W-1 | RPM (24 h) | 促进成球(血管生成,防止细胞外蛋白过度积聚):VEGFA、VEGFD、MSN、MMP3↑;成球时(编码结构蛋白):ACTB、ACTA2、KRT8、TUBB、EZR、RDX、PRKCA、CAV1、MMP9、PAI1、CTGF、MCP1↓ |
Kopp等[ | FTC-133、Nthy-ori 3-1 | RPM(14 d) | 重力敏感的生长或血管生成因子参与成球:VEGF、FLT-1、FLK-1、CD44、Copine 1、TGM2、IL-6、IL-8、IL-17、OPN、NGAL、LCN2 |
Riwaldt等[ | FTC-133 | 太空失重(12 d) | 抑制MCS生长的蛋白质:细胞外基质蛋白↑,磷酸化profilin 1↑ |
Bauer等[ | FTC-133 | RPM(3 d) | 成球时:CAV1、p130cas↓,ASAP1↑, PXN、VCL、PTK2利于成球 |
Riwaldt等[ | FTC-133 | 太空失重(12 d) | 成球时:CAV1、VCAM-1↓, 参与抑制MCS形成:CAV1、VCAM、组织因子、α2巨球蛋白、载脂蛋白B、基质金属蛋白酶1的组织抑制剂和蛋白激酶Cα |
Svejgaard等[ | ML-1、UCLA RO82-W-1 | RPM(7 d)和FRC(7 d) | ML-1细胞:IL-6、MCP-1↑(促进MCS形成);RO82-W-1细胞(RPM/FRC):IL-6↑,MCP-1分泌远低于ML-1细胞的释放,MCP-1的释放被抑制 |
Ma等[ | FTC-133 | 太空失重(10 d) | 成球时:(影响血管生成的细胞因子和生长因子的基因表达)IL6、IL15、VEGFD、FGF17↑,VEGFA↓ |
Pietsch等[ | FTC-133 | 太空失重(10 d) | CTGF, EGF↓ |
Grosse等[ | FTC-133 | RPM(24 h) | 参与成球:NF-kB |
[17] | Krüger M, Melnik D, Kopp S, et al. Fighting thyroid cancer with microgravity research[J]. Int J Mol Sci, 2019, 20(10):2553. |
[18] | Grimm D, Bauer J, Kossmehl P, et al. Simulated microgravity alters differentiation and increases apoptosis in human follicular thyroid carcinoma cells[J]. FASEB J, 2002, 16(6):604-606. |
[19] | Kopp S, Sahana J, Islam T, et al. The role of NFκB in spheroid formation of human breast cancer cells cultured on the Random Positioning Machine[J]. Sci Rep, 2018, 8(1):921. |
[20] | Bauer J, Wehland M, Pietsch J, et al. Annotated gene and proteome data support recognition of interconnections between the results of different experiments in space research[J]. Microgravity Sci Tec, 2016, 28(3):357-365. |
[21] |
Riwaldt S, Bauer J, Wehland M, et al. Pathways Regula-ting spheroid formation of human follicular thyroid cancer cells under simulated microgravity conditions: a genetic approach[J]. Int J Mol Sci, 2016, 17(4):528.
doi: 10.3390/ijms17040528 pmid: 27070589 |
[22] | Kopp S, Warnke E, Wehland M, et al. Mechanisms of three-dimensional growth of thyroid cells during long-term simulated microgravity[J]. Sci Rep, 2015, 5:16691. |
[23] | Ulbrich C, Pietsch J, Grosse J, et al. Differential gene regulation under altered gravity conditions in follicular thyroid cancer cells: relationship between the extracellular matrix and the cytoskeleton[J]. Cell Physiol Biochem, 2011, 28(2):185-198. |
[24] | Zhao T, Li R, Tan X, et al. Simulated microgravity reduces focal adhesions and alters cytoskeleton and nuclear positioning leading to enhanced apoptosis via suppressing FAK/RhoA-mediated mTORC1/NF-κB and ERK1/2 pathways[J]. Int J Mol Sci, 2018, 19(7):1994. |
[25] | Deng B, Liu R, Tian X, et al. Simulated microgravity inhibits the viability and migration of glioma via FAK/RhoA/Rock and FAK/Nek2 signaling[J]. In Vitro Cell Dev Biol Anim, 2019, 55(4):260-271. |
[26] |
Zhao T, Tang X, Umeshappa CS, et al. Simulated microgravity promotes cell apoptosis through suppressing Uev1A/TICAM/TRAF/NF-κB-regulated anti-apoptosis and p53/PCNA- and ATM/ATR-Chk1/2-controlled DNA-da-mage response pathways[J]. J Cell Biochem, 2016, 117(9):2138-2148.
doi: 10.1002/jcb.25520 pmid: 26887372 |
[27] | Lin SC, Gou GH, Hsia CW, et al. Simulated microgravity disrupts cytoskeleton organization and increases apoptosis of rat neural crest stem cells via upregulating CXCR4 expression and RhoA-ROCK1-p38 MAPK-p53 signaling[J]. Stem Cells Dev, 2016, 25(15):1172-1193. |
[28] | 韩标, 张扬, 李昊, 等. 模拟微重力环境下核因子κB信号通路调节MC3T3-E1细胞成骨分化的实验研究[J]. 生物医学工程学杂志, 2019, 36(3):421-427. |
[29] |
Riwaldt S, Pietsch J, Sickmann A, et al. Identification of proteins involved in inhibition of spheroid formation under microgravity[J]. Proteomics, 2015, 15(17):2945-2952.
doi: 10.1002/pmic.201500067 pmid: 25930030 |
[30] | Siveen KS, Prabhu K, Krishnankutty R, et al. Vascular endothelial growth factor (VEGF) signaling in tumour vascularization: potential and challenges[J]. Curr Vasc Phar-macol, 2017, 15(4):339-351. |
[31] | Pietsch J, Sickmann A, Weber G, et al. A proteomic approach to analysing spheroid formation of two human thyroid cell lines cultured on a random positioning machine[J]. Proteomics, 2011, 11(10):2095-2104. |
[32] | Bauer J, Kopp S, Schlagberger EM, et al. Proteome analysis of human follicular thyroid cancer cells exposed to the random positioning machine[J]. Int J Mol Sci, 2017, 18(3):546. |
[33] |
Riwaldt S, Bauer J, Pietsch J, et al. The importance of caveolin-1 as key-regulator of three-dimensional growth in thyroid cancer cells cultured under real and simulated microgravity conditions[J]. Int J Mol Sci, 2015, 16(12):28296-28310.
doi: 10.3390/ijms161226108 pmid: 26633361 |
[34] | Svejgaard B, Wehland M, Ma X, et al. Common effects on cancer cells exerted by a random positioning machine and a 2D clinostat[J]. PLoS One, 2015, 10(8):e0135157. |
[35] | Ma X, Pietsch J, Wehland M, et al. Differential gene expression profile and altered cytokine secretion of thyroid cancer cells in space[J]. FASEB J, 2014, 28(2):813-835. |
[36] | Pietsch J, Ma X, Wehland M, et al. Spheroid formation of human thyroid cancer cells in an automated culturing system during the shenzhou-8 space mission[J]. Biomaterials, 2013, 34(31):7694-7705. |
[37] |
Grosse J, Wehland M, Pietsch J, et al. Gravity-sensitive signaling drives 3-dimensional formation of multicellular thyroid cancer spheroids[J]. FASEB J, 2012, 26(12):5124-5140.
doi: 10.1096/fj.12-215749 pmid: 22964303 |
[38] |
Hammond TG, Benes E, O′Reilly KC, et al. Mechanical culture conditions effect gene expression: gravity-induced changes on the space shuttle[J]. Physiol Genomics, 2000, 3(3):163-173.
pmid: 11015612 |
[1] | Jhala DV, Kale RK, Singh RP. Microgravity alters cancer growth and progression[J]. Curr Cancer Drug Targets, 2014, 14(4):394-406. |
[2] | 苟鸿蒙, 胡瑜, 杨春. 微重力对人类细胞影响的研究进展[J]. 医学综述, 2018, 24(7):1279-1283,1288. |
[3] |
Bradbury P, Wu H, Choi JU, et al. Modeling the impact of microgravity at the cellular level: implications for human disease[J]. Front Cell Dev Biol, 2020, 8:96.
doi: 10.3389/fcell.2020.00096 pmid: 32154251 |
[4] | Albi E, Krüger M, Hemmersbach R, et al. Impact of gravity on thyroid cells[J]. Int J Mol Sci, 2017, 18(5):972. |
[5] |
Plakhuta-Plakutina GI. Effect of weightlessness and artificial gravitation on thyroid gland morphology[J]. Arkh Anat Gistol Embriol, 1979, 76(3):17-21.
pmid: 435096 |
[6] | Aleshcheva G, Bauer J, Hemmersbach R, et al. Scaffold-free tissue formation under real and simulated microgra-vity conditions[J]. Basic Clin Pharmacol Toxicol, 2016, 119(Suppl 3):26-33. |
[7] | Warnke E, Pietsch J, Wehland M, et al. Spheroid formation of human thyroid cancer cells under simulated microgravity: a possible role of CTGF and CAV1[J]. Cell Commun Signal, 2014, 12:32. |
[8] | Masini MA, Albi E, Barmo C, et al. The impact of long-term exposure to space environment on adult mammalian organisms: a study on mouse thyroid and testis[J]. PLoS One, 2012, 7(4):e35418. |
[9] | 张倍宁. RCCS模拟微重力影响大鼠甲状腺滤泡上皮细胞生长特性和分泌功能的研究[D]. 安徽医科大学, 2018,1-65. |
[10] |
Albi E, Ambesi-Impiombato FS, Peverini M, et al. Thyrotropin receptor and membrane interactions in FRTL-5 thyroid cell strain in microgravity[J]. Astrobiology, 2011, 11(1):57-64.
doi: 10.1089/ast.2010.0519 pmid: 21294645 |
[11] | Melnik D, Sahana J, Corydon TJ, et al. Dexamethasone inhibits spheroid formation of thyroid cancer cells exposed to simulated microgravity[J]. Cells, 2020, 9(2):367. |
[12] |
Martin A, Zhou A, Gordon RE, et al. Thyroid organoid formation in simulated microgravity: influence of ke-ratinocyte growth factor[J]. Thyroid, 2000, 10(6):481-487.
pmid: 10907991 |
[13] | Warnke E, Pietsch J, Kopp S, et al. Cytokine release and focal adhesion proteins in normal thyroid cells cultured on the random positioning machine[J]. Cell Physiol Biochem, 2017, 43(1):257-270. |
[14] |
Vistejnova L, Safrankova B, Nesporova K, et al. Low molecular weight hyaluronan mediated CD44 dependent induction of IL-6 and chemokines in human dermal fibroblasts potentiates innate immune response[J]. Cytokine, 2014, 70(2):97-103.
doi: 10.1016/j.cyto.2014.07.006 pmid: 25126764 |
[15] |
Infanger M, Kossmehl P, Shakibaei M, et al. Simulated weightlessness changes the cytoskeleton and extracellular matrix proteins in papillary thyroid carcinoma cells[J]. Cell Tissue Res, 2006, 324(2):267-277.
pmid: 16432709 |
[16] | Lin X, Zhang K, Wei D, et al. The impact of spaceflight and simulated microgravity on cell adhesion[J]. Int J Mol Sci, 2020, 21(9):3031. |
[39] | Pacifico F, Leonardi A. Role of NF-kappaB in thyroid cancer[J]. Mol Cell Endocrinol, 2010, 321(1):29-35. |
[1] | HE Wen, GU Jianhua, XING Xujian, WENG Ziyi, FEI Jian. Tracheal diverticula discovered during surgery: a report of 2 cases and literature review [J]. Journal of Surgery Concepts & Practice, 2023, 28(04): 383-387. |
[2] | KONG Weiqi, HE Jun, YANG Chengguang, LIU Weiwei, XU Yingjie. Pheochromocytoma with papillary thyroid carcinoma: one case report [J]. Journal of Surgery Concepts & Practice, 2023, 28(02): 162-165. |
[3] | YAN Haibo, XIA Zhongping, CHEN Shan, JIANG Lin, HAN Chun. Risk factors for Delphian lymph node metastasis in papillary thyroid carcinoma [J]. Journal of Surgery Concepts & Practice, 2022, 27(05): 453-457. |
[4] | LI Rui, LIU Zhuoran, YAN Jiqi. Progress of study on medullary thyroid carcinoma with serum calcitonin-negative and large mass [J]. Journal of Surgery Concepts & Practice, 2022, 27(03): 271-275. |
[5] | CHEN Chengkun, GUO Bomin, DENG Xianzhao, WU Bo, FAN Youben. Diagnosis and treatment of medullary thyroid carcinoma-an update [J]. Journal of Surgery Concepts & Practice, 2022, 27(03): 276-280. |
[6] | WU Chunxiao, GU Kai, PANG Yi, BAO Pingping, WANG Chunfang, SHI Liang, XIANG Yongmei, GONG Yangming, DOU Jianming, WU Mengyin, FU Chen, SHI Yan. Thyroid cancer incidence and mortality in Shanghai China 2016 and trends from 2002 to 2016 [J]. Journal of Surgery Concepts & Practice, 2022, 27(01): 58-65. |
[7] | LIU Rongyao, LI Xiangcui, WANG Lina, CHEN Haizhen. Analysis of risk factors for cervical lymph node metastasis in papillary thyroid carcinoma [J]. Journal of Surgery Concepts & Practice, 2022, 27(01): 76-79. |
[8] | ZHAN Ling, QIU Weihua. Progress in study on apatinib in treatment of both radioactive iodine refractory and more aggressive thyroid carcinoma [J]. Journal of Surgery Concepts & Practice, 2021, 26(06): 564-567. |
[9] | FAN Jinfang, SHEN Yi, ZHAN Weiwei, TAO Lingling, LI Weiwei, KUANG Lijun, ZHOU Wei. Clinicopathological analysis of papillary thyroid microcarcinoma in isthmus [J]. Journal of Surgery Concepts & Practice, 2021, 26(06): 528-531. |
[10] | ZHANG Gang, ZHANG Zhe, ZHANG Shu, LI Zhirong, TIAN Wuguo, HUANG Qi, WANG Lingli, XU Yan. Association between RET genotype and disease phenotype in patients with hereditary medullary thyroid carcinoma [J]. Journal of Surgery Concepts & Practice, 2021, 26(06): 522-527. |
[11] | SUN Hanxing, SHEN Xiaohui, GAO Haoji, LIU Zhuoran, CHEN Xi, QIU Weihua, YAN Jiqi. Preoperative evaluation and preparation of Graves′ disease: a report of 126 cases [J]. Journal of Surgery Concepts & Practice, 2021, 26(06): 517-521. |
[12] | YAN Shouyi, CHEN Hongbin, ZHANG Liyong, WANG Bo, CAI Shaojun, LIN Siying, ZHAO Wenxin. Retrospective study on Bethesda Ⅴ thyroid nodule in diagnosis of papillary thyroid carcinoma: retrospective study [J]. Journal of Surgery Concepts & Practice, 2021, 26(06): 512-516. |
[13] | TANG Juan, LIU Zhiyan. [J]. Journal of Surgery Concepts & Practice, 2021, 26(06): 504-509. |
[14] | WANG Zhuoying, SHI Yuan, GUO Kai, QIAN Kai. Making strange new norm: clinical approaches to children andadolescent with differentiated thyroid carcinoma [J]. Journal of Surgery Concepts & Practice, 2021, 26(06): 497-499. |
[15] | HUANG Naisi, CHEN Jiaying, Jl Qinghai, QANG Yu. New adjuvant treatment of locally advanced thyroid carcinoma in era of targeted therapy [J]. Journal of Surgery Concepts & Practice, 2021, 26(06): 493-496. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||