1. |
|
2. |
C. Jiang, J. Liu, Y. Ni, S. Qu, L. Liu et al., Mammalian-brain-inspired neuromorphic motion-cognition nerve achieves cross-modal perceptual enhancement. Nat. Commun. 14, 1344 ( 2023). https://doi.org/10.1038/s41467-023-36935-w
|
3. |
|
4. |
R. Yuan, Q. Duan, P.J. Tiw, G. Li, Z. Xiao et al., A calibratable sensory neuron based on epitaxial VO 2 for spike-based neuromorphic multisensory system. Nat. Commun. 13, 3973 ( 2022). https://doi.org/10.1038/s41467-022-31747-w
|
5. |
J. Zhu, X. Zhang, R. Wang, M. Wang, P. Chen et al., A heterogeneously integrated spiking neuron array for multimode-fused perception and object classification. Adv. Mater. 34(24), e2200481 ( 2022). https://doi.org/10.1002/adma.202200481
|
6. |
|
7. |
|
8. |
X. Chen, T. Wang, J. Shi, W. Lv, Y. Han et al., A novel artificial neuron-like gas sensor constructed from CuS quantum dots/Bi 2S 3 nanosheets. Nano-Micro Lett. 14, 8 ( 2021). https://doi.org/10.1007/s40820-021-00740-1
|
9. |
K. Liang, R. Wang, B. Huo, H. Ren, D. Li et al., Fully printed optoelectronic synaptic transistors based on quantum dot-metal oxide semiconductor heterojunctions. ACS Nano 16(6), 8651-8661 ( 2022). https://doi.org/10.1021/acsnano.2c00439
|
10. |
X. Han, Z. Xu, W. Wu, X. Liu, P. Yan et al., Recent progress in optoelectronic synapses for artificial visual-perception system. Small Struct. 1(3), 2000029 ( 2020). https://doi.org/10.1002/sstr.202000029
|
11. |
D. Xie, K. Yin, Z.-J. Yang, H. Huang, X. Li et al., Polarization-perceptual anisotropic two-dimensional ReS 2 neuro-transistor with reconfigurable neuromorphic vision. Mater. Horiz. 9(5), 1448-1459 ( 2022). https://doi.org/10.1039/d1mh02036f
|
12. |
|
13. |
F. Zhou, Z. Zhou, J. Chen, T.H. Choy, J. Wang et al., Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 14, 776-782 ( 2019). https://doi.org/10.1038/s41565-019-0501-3
|
14. |
J. Yu, X. Yang, G. Gao, Y. Xiong, Y. Wang et al., Bioinspired mechano-photonic artificial synapse based on graphene/MoS 2 heterostructure. Sci. Adv. 7, eabd9117 ( 2021). https://doi.org/10.1126/sciadv.abd9117
|
15. |
S. Wang, X. Chen, C. Zhao, Y. Kong, B. Lin et al., An organic electrochemical transistor for multi-modal sensing, memory and processing. Nat. Electron. 6, 281-291 ( 2023). https://doi.org/10.1038/s41928-023-00950-y
|
16. |
|
17. |
|
18. |
|
19. |
|
20. |
|
21. |
W. Huh, D. Lee, C.-H. Lee, Memristors based on 2D materials as an artificial synapse for neuromorphic electronics. Adv. Mater. 32(51), e2002092 ( 2020). https://doi.org/10.1002/adma.202002092
|
22. |
H.-S. Zhang, X.-M. Dong, Z.-C. Zhang, Z.-P. Zhang, C.-Y. Ban et al., Co-assembled perylene/graphene oxide photosensitive heterobilayer for efficient neuromorphics. Nat. Commun. 13, 4996 ( 2022). https://doi.org/10.1038/s41467-022-32725-y
|
23. |
X. Zhu, C. Gao, Y. Ren, X. Zhang, E. Li et al., High-contrast bidirectional optoelectronic synapses based on 2D molecular crystal heterojunctions for motion detection. Adv. Mater. 35(24), e2301468 ( 2023). https://doi.org/10.1002/adma.202301468
|
24. |
K.C. Kwon, J.H. Baek, K. Hong, S.Y. Kim, H.W. Jang, Memristive devices based on two-dimensional transition metal chalcogenides for neuromorphic computing. Nano-Micro Lett. 14, 58 ( 2022). https://doi.org/10.1007/s40820-021-00784-3
|
25. |
|
26. |
D. Xie, G. Gao, B. Tian, Z. Shu, H. Duan et al., Porous metal-organic framework/ReS 2 heterojunction phototransistor for polarization-sensitive visual adaptation emulation. Adv. Mater. 35(26), e2212118 ( 2023). https://doi.org/10.1002/adma.202212118
|
27. |
P.V. Pham, S.C. Bodepudi, K. Shehzad, Y. Liu, Y. Xu et al., 2D heterostructures for ubiquitous electronics and optoelectronics: principles, opportunities, and challenges. Chem. Rev. 122(6), 6514-6613 ( 2022). https://doi.org/10.1021/acs.chemrev.1c00735
|
28. |
L. Zhang, X. Li, F. Yao, L. Li, H. Huang et al., Fast identification of the crystallographic orientation of violet phosphorus nanoflakes with preferred In-plane cleavage edge orientation. Adv. Funct. Mater. 32(18), 2111057 ( 2022). https://doi.org/10.1002/adfm.202111057
|
29. |
L. Zhou, J. Kang, Y. Dong, Y. Wang, Y. Li et al., Solvent-stabilized few-layer violet phosphorus and its ultrafast nonlinear optics. Nano Res. 16, 5843-5849 ( 2023). https://doi.org/10.1007/s12274-022-5224-3
|
30. |
X. Ye, M. Qi, H. Qiang, M. Chen, X. Zheng et al., Laser-ablated violet phosphorus/graphene heterojunction as ultrasensitive ppb-level room-temperature NO sensor. Chin. Chem. Lett. 34(9), 108199 ( 2023). https://doi.org/10.1016/j.cclet.2023.108199
|
31. |
A.G. Ricciardulli, Y. Wang, S. Yang, P. Samorì, Two-dimensional violet phosphorus: a p-type semiconductor for (opto)electronics. J. Am. Chem. Soc. 144(8), 3660-3666 ( 2022). https://doi.org/10.1021/jacs.1c12931
|
32. |
L. Jin, R. Guo, T. Han, R. Wang, Y. Zhang, Ultrathin 2D violet phosphorus nanosheets: facile liquid-phase exfoliation, characterization, and photoelectrochemical application. Adv. Funct. Mater. 33(27), 2213583 ( 2023). https://doi.org/10.1002/adfm.202213583
|
33. |
Y. Li, S. Cai, W.K. Lai, C. Wang, L. Rogée et al., Impurity-induced robust trionic effect in layered violet phosphorus. Adv. Opt. Mater. 10(1), 2101538 ( 2022). https://doi.org/10.1002/adom.202101538
|
34. |
|
35. |
Y. Zhang, T. Zhu, N. Zhang, Y. Li, X. Li et al., Air-stable violet phosphorus/MoS 2 van der waals heterostructure for high-responsivity and gate-tunable photodetection. Small 19(33), e2301463 ( 2023). https://doi.org/10.1002/smll.202301463
|
36. |
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti 3AlC 2. Adv. Mater. 23(37), 4248-4253 ( 2011). https://doi.org/10.1002/adma.201102306
|
37. |
H. Ma, L. Jia, Y. Lin, H. Fang, W. Wu et al., A self-powered photoelectrochemical ultraviolet photodetector based on Ti 3C 2T x/TiO 2 in situ formed heterojunctions. Nanotechnology 33(7), 075502 ( 2021). https://doi.org/10.1088/1361-6528/ac0eaa
|
38. |
|
39. |
X. Liu, K. Chen, X. Li, Q. Xu, J. Weng et al., Electron matters: recent advances in passivation and applications of black phosphorus. Adv. Mater. 33(50), e2005924 ( 2021). https://doi.org/10.1002/adma.202005924
|
40. |
Z. Li, Z. Li, Z. Shi, X. Fang, Facet-dependent, fast response, and broadband photodetector based on highly stable all-inorganic CsCu 2I 3 single crystal with 1D electronic structure. Adv. Funct. Mater. 30(28), 2002634 ( 2020). https://doi.org/10.1002/adfm.202002634
|
41. |
Q. Liang, Q. Wang, Q. Zhang, J. Wei, S.X. Lim et al., High-performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe 2. Adv. Mater. 31(24), e1807609 ( 2019). https://doi.org/10.1002/adma.201807609
|
42. |
X. Yang, X. Liu, L. Qu, F. Gao, Y. Xu et al., Boosting photoresponse of self-powered InSe-based photoelectrochemical photodetectors via suppression of interface doping. ACS Nano 16(5), 8440-8448 ( 2022). https://doi.org/10.1021/acsnano.2c02986
|
43. |
F.I. Alzakia, B. Tang, S.J. Pennycook, S.C. Tan, Engineering the photoresponse of liquid-exfoliated 2D materials by size selection and controlled mixing for an ultrasensitive and ultraresponsive photodetector. Mater. Horiz. 7(12), 3325-3338 ( 2020). https://doi.org/10.1039/D0MH01493A
|
44. |
H. Fang, H. Ma, C. Zheng, S. Lennon, W. Wu et al., A high-performance transparent photodetector via building hierarchical g-C 3N 4 nanosheets/CNTs van der Waals heterojunctions by a facile and scalable approach. Appl. Surf. Sci. 529, 147122 ( 2020). https://doi.org/10.1016/j.apsusc.2020.147122
|
45. |
|
46. |
|
47. |
|
48. |
|
49. |
J.H. Baek, K.J. Kwak, S.J. Kim, J. Kim, J.Y. Kim et al., Two-terminal lithium-mediated artificial synapses with enhanced weight modulation for feasible hardware neural networks. Nano-Micro Lett. 15, 69 ( 2023). https://doi.org/10.1007/s40820-023-01035-3
|
50. |
Y. Liu, Y. Wei, M. Liu, Y. Bai, G. Liu et al., Two-dimensional metal-organic framework film for realizing optoelectronic synaptic plasticity. Angew. Chem. Int. Ed. 60(32), 17440-17445 ( 2021). https://doi.org/10.1002/anie.202106519
|
51. |
N. Li, C. He, Q. Wang, J. Tang, Q. Zhang et al., Gate-tunable large-scale flexible monolayer MoS 2 devices for photodetectors and optoelectronic synapses. Nano Res. 15, 5418-5424 ( 2022). https://doi.org/10.1007/s12274-022-4122-z
|
52. |
J. Sun, S. Oh, Y. Choi, S. Seo, M.J. Oh et al., Optoelectronic synapse based on IGZO-alkylated graphene oxide hybrid structure. Adv. Funct. Mater. 28(47), 1804397 ( 2018). https://doi.org/10.1002/adfm.201804397
|
53. |
Y. Chen, Y. Kang, H. Hao, X. Xie, J. Zeng et al., All two-dimensional integration-type optoelectronic synapse mimicking visual attention mechanism for multi-target recognition. Adv. Funct. Mater. 33(6), 2209781 ( 2023). https://doi.org/10.1002/adfm.202209781
|
54. |
V. Krishnamurthi, T. Ahmed, M. Mohiuddin, A. Zavabeti, N. Pillai et al., A visible-blind photodetector and artificial optoelectronic synapse using liquid-metal exfoliated ZnO nanosheets. Adv. Opt. Mater. 9(16), 2100449 ( 2021). https://doi.org/10.1002/adom.202100449
|
55. |
Z. Luo, Y. Xie, Z. Li, Y. Wang, L. Li et al., Plasmonically engineered light-matter interactions in Au-nanoparticle/MoS 2 heterostructures for artificial optoelectronic synapse. Nano Res. 15, 3539-3547 ( 2022). https://doi.org/10.1007/s12274-021-3875-0
|
56. |
S.G. Hu, Y. Liu, T.P. Chen, Z. Liu, Q. Yu et al., Emulating the Ebbinghaus forgetting curve of the human brain with a NiO-based memristor. Appl. Phys. Lett. 103(13), 133701 ( 2013). https://doi.org/10.1063/1.4822124
|
57. |
|
58. |
H. An, T. Habib, S. Shah, H. Gao, A. Patel et al., Water sorption in MXene/polyelectrolyte multilayers for ultrafast humidity sensing. ACS Appl. Nano Mater. 2(2), 948-955 ( 2019). https://doi.org/10.1021/acsanm.8b02265
|
59. |
J. Tang, H. Wan, L. Chang, B. Hu, S. Cui et al., Tunable infrared sensing properties of MXenes enabled by intercalants. Adv. Opt. Mater. 10, 2200623 ( 2022). https://doi.org/10.1002/adom.202200623
|
60. |
L. Sun, S. Qu, Y. Du, L. Yang, Y. Li et al., Bio-inspired vision and neuromorphic image processing using printable metal oxide photonic synapses. ACS Photonics 10(1), 242-252 ( 2023). https://doi.org/10.1021/acsphotonics.2c01583
|
61. |
Y. Mo, B. Luo, H. Dong, B. Hou, Light-stimulated artificial synapses based on Si-doped GaN thin films. J. Mater. Chem. C 10(36), 13099-13106 ( 2022). https://doi.org/10.1039/D2TC02168D
|
62. |
Z. Wan, Q. Zhang, F. Hu, Y. Dong, R. Li et al., Topological insulator optoelectronic synapses for high-accuracy binary image recognition using recurrent neural networks. Adv. Opt. Mater. 11, 2201852 ( 2023). https://doi.org/10.1002/adom.202201852
|
63. |
R.A. Bjork, E.L. Bjork, A new theory of disuse and an old theory of stimulus fluctuation, in From Learning Processes to Cognitive Processes. ed. by A. Healy, S. Kosslyn, R. Shiffrin (Erlbaum, Hillsdale, 1992), pp. 35-67
|
64. |
|