1. |
K.W. Leong, Y. Wang, M. Ni, W. Pan, S. Luo et al., Rechargeable Zn-air batteries: recent trends and future perspectives. Renew. Sustain. Energy Rev. 154, 111771 ( 2022). https://doi.org/10.1016/j.rser.2021.111771
|
2. |
J.-H. Lee, G. Yang, C.-H. Kim, R.L. Mahajan, S.-Y. Lee et al., Flexible solid-state hybrid supercapacitors for the Internet of everything (IoE). Energy Environ. Sci. 15, 2233-2258 ( 2022). https://doi.org/10.1039/D1EE03567C
|
3. |
|
4. |
|
5. |
J. Piątek, S. Afyon, T.M. Budnyak, S. Budnyk, M.H. Sipponen et al., Sustainable Li-ion batteries: chemistry and recycling. Adv. Energy Mater. 11, 2003456 ( 2021). https://doi.org/10.1002/aenm.202003456
|
6. |
Y. Huang, Y. Wang, C. Tang, J. Wang, Q. Zhang et al., Atomic modulation and structure design of carbons for bifunctional electrocatalysis in metal-air batteries. Adv. Mater. 31, e1803800 ( 2019). https://doi.org/10.1002/adma.201803800
|
7. |
Y. Han, C. Zhou, B. Wang, Y. Li, L. Zhang et al., Rational design of advanced oxygen electrocatalysts for high-performance zinc-air batteries. Chem Catal. 2, 3357-3394 ( 2022). https://doi.org/10.1016/j.checat.2022.10.002
|
8. |
Y. Li, J. Fu, C. Zhong, T. Wu, Z. Chen, W. Hu, K. Amine, J. Lu, Recent advances in flexible zinc-based rechargeable batteries. Adv. Energy Mater. 9(1), 1802605 ( 2019). https://doi.org/10.1002/aenm.201802605
|
9. |
|
10. |
Y. Zhong, X. Xu, P. Liu, R. Ran, S.P. Jiang et al., A function-separated design of electrode for realizing high-performance hybrid zinc battery. Adv. Energy Mater. 10, 2002992 ( 2020). https://doi.org/10.1002/aenm.202002992
|
11. |
Y. Arafat, M.R. Azhar, Y. Zhong, H.R. Abid, M.O. Tadé et al., Advances in zeolite imidazolate frameworks (ZIFs) derived bifunctional oxygen electrocatalysts and their application in zinc-air batteries. Adv. Energy Mater. 11, 2100514 ( 2021). https://doi.org/10.1002/aenm.202100514
|
12. |
J.-S. Lee, S. Tai Kim, R. Cao, N.-S. Choi, M. Liu et al., Metal-air batteries with high energy density: Li-air versus Zn-air. Adv. Energy Mater. 1, 34-50 ( 2011). https://doi.org/10.1002/aenm.201000010
|
13. |
Q. Liu, L. Wang, H. Fu, Research progress on the construction of synergistic electrocatalytic ORR/OER self-supporting cathodes for zinc-air batteries. J. Mater. Chem. A 11, 4400-4427 ( 2023). https://doi.org/10.1039/D2TA09626A
|
14. |
Y. Zhong, X. Xu, W. Wang, Z. Shao, Recent advances in metal-organic framework derivatives as oxygen catalysts for zinc-air batteries. Batter. Supercaps 2, 272-289 ( 2019). https://doi.org/10.1002/batt.201800093
|
15. |
Y. Zhang, J. Wang, M. Alfred, P. Lv, F. Huang et al., Recent advances of micro-nanofiber materials for rechargeable zinc-air batteries. Energy Storage Mater. 51, 181-211 ( 2022). https://doi.org/10.1016/j.ensm.2022.06.039
|
16. |
Q. Wang, S. Kaushik, X. Xiao, Q. Xu, Sustainable zinc-air battery chemistry: advances, challenges and prospects. Chem. Soc. Rev. 52, 6139-6190 ( 2023). https://doi.org/10.1039/d2cs00684g
|
17. |
Y. Kumar, M. Mooste, K. Tammeveski, Recent progress of transition metal-based bifunctional electrocatalysts for rechargeable zinc-air battery application. Curr. Opin. Electrochem. 38, 101229 ( 2023). https://doi.org/10.1016/j.coelec.2023.101229
|
18. |
L. Wei, E.H. Ang, Y. Yang, Y. Qin, Y. Zhang et al., Recent advances of transition metal based bifunctional electrocatalysts for rechargeable zinc-air batteries. J. Power. Sources 477, 228696 ( 2020). https://doi.org/10.1016/j.jpowsour.2020.228696
|
19. |
P. Zhang, K. Chen, J. Li, M. Wang, M. Li et al., Bifunctional single atom catalysts for rechargeable zinc-air batteries: from dynamic mechanism to rational design. Adv. Mater. 35, e2303243 ( 2023). https://doi.org/10.1002/adma.202303243
|
20. |
A. Kundu, T. Kuila, N.C. Murmu, P. Samanta, S. Das, Metal-organic framework-derived advanced oxygen electrocatalysts as air-cathodes for Zn-air batteries: recent trends and future perspectives. Mater. Horiz. 10, 745-787 ( 2023). https://doi.org/10.1039/D2MH01067D
|
21. |
S. Das, A. Kundu, T. Kuila, N.C. Murmu, Recent advancements on designing transition metal-based carbon-supported single atom catalysts for oxygen electrocatalysis: Miles to go for sustainable Zn-air batteries. Energy Storage Mater. 61, 102890 ( 2023). https://doi.org/10.1016/j.ensm.2023.102890
|
22. |
|
23. |
Q. Sun, L. Dai, T. Luo, L. Wang, F. Liang et al., Recent advances in solid-state metal-air batteries. Carbon Energy 5, e276 ( 2023). https://doi.org/10.1002/cey2.276
|
24. |
N.A. Thieu, W. Li, X. Chen, S. Hu, H. Tian et al., An overview of challenges and strategies for stabilizing zinc anodes in aqueous rechargeable Zn-ion batteries. Batteries 9, 41 ( 2023). https://doi.org/10.3390/batteries9010041
|
25. |
|
26. |
A.R. Mainar, E. Iruin, L.C. Colmenares, J.A. Blázquez, H.-J. Grande, Systematic cycle life assessment of a secondary zinc-air battery as a function of the alkaline electrolyte composition. Energy Sci. Eng. 6, 174-186 ( 2018). https://doi.org/10.1002/ese3.191
|
27. |
Y. Ma, W. Yu, W. Shang, X. Xiao, Z. Zhao et al., Assessment of the feasibility of Zn-air batteries with alkaline electrolytes working at sub-zero temperatures. Energy Fuels 36, 11227-11233 ( 2022). https://doi.org/10.1021/acs.energyfuels.2c02509
|
28. |
X. Chen, Z. Zhou, H.E. Karahan, Q. Shao, L. Wei et al., Recent advances in materials and design of electrochemically rechargeable zinc-air batteries. Small 14, e1801929 ( 2018). https://doi.org/10.1002/smll.201801929
|
29. |
|
30. |
|
31. |
Y. Xu, Y. Zhang, Z. Guo, J. Ren, Y. Wang et al., Flexible, stretchable, and rechargeable fiber-shaped zinc-air battery based on cross-stacked carbon nanotube sheets. Angew. Chem. Int. Ed. 54, 15390-15394 ( 2015). https://doi.org/10.1002/anie.201508848
|
32. |
X. Chen, B. Liu, C. Zhong, Z. Liu, J. Liu et al., Ultrathin Co 3O 4 layers with large contact area on carbon fibers as high-performance electrode for flexible zinc-air battery integrated with flexible display. Adv. Energy Mater. 7, 1700779 ( 2017). https://doi.org/10.1002/aenm.201700779
|
33. |
J. Zhang, J. Fu, X. Song, G. Jiang, H. Zarrin et al., Laminated cross-linked nanocellulose/graphene oxide electrolyte for flexible rechargeable zinc-air batteries. Adv. Energy Mater. 6, 1600476 ( 2016). https://doi.org/10.1002/aenm.201600476
|
34. |
F. Meng, H. Zhong, D. Bao, J. Yan, X. Zhang, In situ coupling of strung Co 4N and intertwined N-C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn-air batteries. J. Am. Chem. Soc. 138, 10226-10231 ( 2016). https://doi.org/10.1021/jacs.6b05046
|
35. |
Z. Liu, H. Li, M. Zhu, Y. Huang, Z. Tang et al., Towards wearable electronic devices: a quasi-solid-state aqueous lithium-ion battery with outstanding stability, flexibility, safety and breathability. Nano Energy 44, 164-173 ( 2018). https://doi.org/10.1016/j.nanoen.2017.12.006
|
36. |
L. Kong, C. Tang, H.-J. Peng, J.-Q. Huang, Q. Zhang, Advanced energy materials for flexible batteries in energy storage: a review. SmartMat 1, e1007 ( 2020). https://doi.org/10.1002/smm2.1007
|
37. |
S.J. Varma, K. Sambath Kumar, S. Seal, S. Rajaraman, J. Thomas, Fiber-type solar cells, nanogenerators, batteries, and supercapacitors for wearable applications. Adv. Sci. 5, 1800340 ( 2018). https://doi.org/10.1002/advs.201800340
|
38. |
|
39. |
|
40. |
Y. Zheng, J. He, S. Qiu, D. Yu, Y. Zhu et al., Boosting hydrogen peroxide accumulation by a novel air-breathing gas diffusion electrode in electro-Fenton system. Appl. Catal. B Environ. 316, 121617 ( 2022). https://doi.org/10.1016/j.apcatb.2022.121617
|
41. |
A.A. Gewirth, M.S. Thorum, Electroreduction of dioxygen for fuel-cell applications: materials and challenges. Inorg. Chem. 49, 3557-3566 ( 2010). https://doi.org/10.1021/ic9022486
|
42. |
M.M. Hossen, K. Artyushkova, P. Atanassov, A. Serov, Synthesis and characterization of high performing Fe-N-C catalyst for oxygen reduction reaction (ORR) in Alkaline Exchange Membrane Fuel Cells. J. Power. Sources 375, 214-221 ( 2018). https://doi.org/10.1016/j.jpowsour.2017.08.036
|
43. |
L. Peng, L. Shang, T. Zhang, G.I.N. Waterhouse, Recent advances in the development of single-atom catalysts for oxygen electrocatalysis and zinc-air batteries. Adv. Energy Mater. 10, 2003018 ( 2020). https://doi.org/10.1002/aenm.202003018
|
44. |
Q. Zhang, J. Guan, Applications of atomically dispersed oxygen reduction catalysts in fuel cells and zinc-air batteries. Energy Environ. Mater. 4, 307-335 ( 2021). https://doi.org/10.1002/eem2.12128
|
45. |
Y. Long, F. Ye, L. Shi, X. Lin, R. Paul et al., N, P, and S tri-doped holey carbon as an efficient electrocatalyst for oxygen reduction in whole pH range for fuel cell and zinc-air batteries. Carbon 179, 365-376 ( 2021). https://doi.org/10.1016/j.carbon.2021.04.039
|
46. |
J. Yang, P. Ganesan, A. Ishihara, N. Nakashima, Carbon nanotube-based non-precious metal electrode catalysts for fuel cells, water splitting and zinc-air batteries. ChemCatChem 11, 5929-5944 ( 2019). https://doi.org/10.1002/cctc.201901785
|
47. |
C. Chen, M. Jiang, T. Zhou, L. Raijmakers, E. Vezhlev et al., Interface aspects in all-solid-state Li-based batteries reviewed. Adv. Energy Mater. 11, 2003939 ( 2021). https://doi.org/10.1002/aenm.202003939
|
48. |
Y. Zhao, K.R. Adair, X. Sun, Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries. Energy Environ. Sci. 11, 2673-2695 ( 2018). https://doi.org/10.1039/C8EE01373J
|
49. |
Y. Li, L. Zhang, Y. Han, W. Ji, Z. Liu et al., Interface engineering of bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Mater. Chem. Front. 7, 4281-4303 ( 2023). https://doi.org/10.1039/d3qm00237c
|
50. |
X. Liu, G. Zhang, L. Wang, H. Fu, Structural design strategy and active site regulation of high-efficient bifunctional oxygen reaction electrocatalysts for Zn-air battery. Small 17, e2006766 ( 2021). https://doi.org/10.1002/smll.202006766
|
51. |
S. Wang, S. Chen, L. Ma, J.A. Zapien, Recent progress in cobalt-based carbon materials as oxygen electrocatalysts for zinc-air battery applications. Mater. Today Energy 20, 100659 ( 2021). https://doi.org/10.1016/j.mtener.2021.100659
|
52. |
A. Iqbal, O.M. El-Kadri, N.M. Hamdan, Insights into rechargeable Zn-air batteries for future advancements in energy storing technology. J. Energy Storage 62, 106926 ( 2023). https://doi.org/10.1016/j.est.2023.106926
|
53. |
J.F. Parker, C.N. Chervin, E.S. Nelson, D.R. Rolison, J.W. Long, Wiring zinc in three dimensions re-writes battery performance—dendrite-free cycling. Energy Environ. Sci. 7, 1117-1124 ( 2014). https://doi.org/10.1039/C3EE43754J
|
54. |
J.F. Parker, C.N. Chervin, I.R. Pala, M. Machler, M.F. Burz et al., Rechargeable nickel-3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science 356, 415-418 ( 2017). https://doi.org/10.1126/science.aak9991
|
55. |
Y.N. Jo, K. Prasanna, S.H. Kang, P.R. Ilango, H.S. Kim et al., The effects of mechanical alloying on the self-discharge and corrosion behavior in Zn-air batteries. J. Ind. Eng. Chem. 53, 247-252 ( 2017). https://doi.org/10.1016/j.jiec.2017.04.032
|
56. |
|
57. |
Z. Cai, Y. Ou, J. Wang, R. Xiao, L. Fu et al., Chemically resistant Cu-Zn/Zn composite anode for long cycling aqueous batteries. Energy Storage Mater. 27, 205-211 ( 2020). https://doi.org/10.1016/j.ensm.2020.01.032
|
58. |
|
59. |
E.O. Aremu, D.-J. Park, K.-S. Ryu, The effects of anode additives towards suppressing dendrite growth and hydrogen gas evolution reaction in Zn-air secondary batteries. Ionics 25, 4197-4207 ( 2019). https://doi.org/10.1007/s11581-019-02973-y
|
60. |
S.-M. Lee, Y.-J. Kim, S.-W. Eom, N.-S. Choi, K.-W. Kim et al., Improvement in self-discharge of Zn anode by applying surface modification for Zn-air batteries with high energy density. J. Power. Sources 227, 177-184 ( 2013). https://doi.org/10.1016/j.jpowsour.2012.11.046
|
61. |
Z. Li, H. Wang, Y. Zhong, L. Yuan, Y. Huang et al., Highly reversible and anticorrosive Zn anode enabled by a Ag nanowires layer. ACS Appl. Mater. Interfaces 14, 9097-9105 ( 2022). https://doi.org/10.1021/acsami.1c22873
|
62. |
|
63. |
Z. Zhao, X. Fan, J. Ding, W. Hu, C. Zhong et al., Challenges in zinc electrodes for alkaline zinc-air batteries: obstacles to commercialization. ACS Energy Lett. 4, 2259-2270 ( 2019). https://doi.org/10.1021/acsenergylett.9b01541
|
64. |
|
65. |
A. Chen, C. Zhao, J. Gao, Z. Guo, X. Lu et al., Multifunctional SEI-like structure coating stabilizing Zn anodes at a large current and capacity. Energy Environ. Sci. 16, 275-284 ( 2023). https://doi.org/10.1039/d2ee02931f
|
66. |
T. Xu, K. Liu, N. Sheng, M. Zhang, W. Liu et al., Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: properties, applications, and perspectives. Energy Storage Mater. 48, 244-262 ( 2022). https://doi.org/10.1016/j.ensm.2022.03.013
|
67. |
Q. Deng, Z. Luo, R. Yang, J. Li, Toward organic carbonyl-contained small molecules in rechargeable batteries: a review of current modified strategies. ACS Sustain. Chem. Eng. 8, 15445-15465 ( 2020). https://doi.org/10.1021/acssuschemeng.0c05884
|
68. |
Z. Zhang, D. Zhou, G. Huang, L. Zhou, B. Huang, Preparation and properties of ZnO/PVA/β-CD/PEG composite electrode for rechargeable zinc anode. J. Electroanal. Chem. 827, 85-92 ( 2018). https://doi.org/10.1016/j.jelechem.2018.09.019
|
69. |
|
70. |
A. Chen, C. Zhao, J. Gao, Z. Guo, X. Lu, J. Zhang, Z. Liu, M. Wang, N. Liu, L. Fan, Y. Zhang, N. Zhang, Multifunctional SEI-like structure coating stabilizing Zn anodes at a large current and capacity. Energy Environ. Sci. 16(1), 275-284 ( 2023). https://doi.org/10.1039/d2ee02931f
|
71. |
H.E. Lin, C.H. Ho, C.Y. Lee, Discharge performance of zinc coating prepared by pulse electroplating with different frequencies for application in zinc-air battery. Surf. Coat. Technol. 319, 378-385 ( 2017). https://doi.org/10.1016/j.surfcoat.2017.04.020
|
72. |
|
73. |
S.-B. Wang, Q. Ran, R.-Q. Yao, H. Shi, Z. Wen et al., Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun. 11, 1634 ( 2020). https://doi.org/10.1038/s41467-020-15478-4
|
74. |
G. Zhang, X. Zhang, H. Liu, J. Li, Y. Chen et al., 3D-printed multi-channel metal lattices enabling localized electric-field redistribution for dendrite-free aqueous Zn ion batteries. Adv. Energy Mater. 11, 2003927 ( 2021). https://doi.org/10.1002/aenm.202003927
|
75. |
|
76. |
H. Zhao, Z. Chi, Q. Zhang, D. Kong, L. Li et al., Dendrite-free Zn anodes enabled by Sn-Cu bimetal/rGO functional protective layer for aqueous Zn-based batteries. Appl. Surf. Sci. 613, 156129 ( 2023). https://doi.org/10.1016/j.apsusc.2022.156129
|
77. |
J. Yan, M. Ye, Y. Zhang, Y. Tang, C. Li, Layered zirconium phosphate-based artificial solid electrolyte interface with zinc ion channels towards dendrite-free Zn metal anodes. Chem. Eng. J. 432, 134227 ( 2022). https://doi.org/10.1016/j.cej.2021.134227
|
78. |
J. Yu, F. Chen, Q. Tang, T.T. Gebremariam, J. Wang et al., Ag-modified Cu foams as three-dimensional anodes for rechargeable zinc-air batteries. ACS Appl. Nano Mater. 2, 2679-2688 ( 2019). https://doi.org/10.1021/acsanm.9b00156
|
79. |
Y. Zhang, M. Zhu, G. Wang, F.-H. Du, F. Yu et al., Dendrites-free Zn metal anodes enabled by an artificial protective layer filled with 2D anionic nanosheets. Small Methods 5, e2100650 ( 2021). https://doi.org/10.1002/smtd.202100650
|
80. |
|
81. |
D. Yang, J. Li, C. Liu, J. Ge, W. Xing et al., Regulating the MXene-zinc interfacial structure toward a highly revisable metal anode of zinc-air batteries. ACS Appl. Mater. Interfaces 15, 10651-10659 ( 2023). https://doi.org/10.1021/acsami.2c20701
|
82. |
M. Cui, B. Yan, F. Mo, X. Wang, Y. Huang et al., In-situ grown porous protective layers with high binding strength for stable Zn anodes. Chem. Eng. J. 434, 134688 ( 2022). https://doi.org/10.1016/j.cej.2022.134688
|
83. |
X. Zhong, Y. Shao, B. Chen, C. Li, J. Sheng et al., Rechargeable zinc-air batteries with an ultralarge discharge capacity per cycle and an ultralong cycle life. Adv. Mater. 35, e2301952 ( 2023). https://doi.org/10.1002/adma.202301952
|
84. |
D.M. See, R.E. White, Temperature and concentration dependence of the specific conductivity of concentrated solutions of potassium hydroxide. J. Chem. Eng. Data 42, 1266-1268 ( 1997). https://doi.org/10.1021/je970140x
|
85. |
|
86. |
A. Naveed, T. Rasheed, B. Raza, J. Chen, J. Yang et al., Addressing thermodynamic Instability of Zn anode: classical and recent advancements. Energy Storage Mater. 44, 206-230 ( 2022). https://doi.org/10.1016/j.ensm.2021.10.005
|
87. |
N. Zhang, X. Chen, M. Yu, Z. Niu, F. Cheng et al., Materials chemistry for rechargeable zinc-ion batteries. Chem. Soc. Rev. 49, 4203-4219 ( 2020). https://doi.org/10.1039/c9cs00349e
|
88. |
Z. Yi, G. Chen, F. Hou, L. Wang, J. Liang, Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv. Energy Mater. 11, 2003065 ( 2021). https://doi.org/10.1002/aenm.202003065
|
89. |
|
90. |
|
91. |
|
92. |
|
93. |
|
94. |
X. Zhu, H. Yang, Y. Cao, X. Ai, Preparation and electrochemical characterization of the alkaline polymer gel electrolyte polymerized from acrylic acid and KOH solution. Electrochim. Acta 49, 2533-2539 ( 2004). https://doi.org/10.1016/j.electacta.2004.02.008
|
95. |
J. Fu, D.U. Lee, F.M. Hassan, L. Yang, Z. Bai et al., Flexible high-energy polymer-electrolyte-based rechargeable zinc-air batteries. Adv. Mater. 27, 5617-5622 ( 2015). https://doi.org/10.1002/adma.201502853
|
96. |
X. Fan, J. Liu, Z. Song, X. Han, Y. Deng et al., Porous nanocomposite gel polymer electrolyte with high ionic conductivity and superior electrolyte retention capability for long-cycle-life flexible zinc-air batteries. Nano Energy 56, 454-462 ( 2019). https://doi.org/10.1016/j.nanoen.2018.11.057
|
97. |
X. Zhong, W. Yi, Y. Qu, L. Zhang, H. Bai et al., Co single-atom anchored on Co 3O 4 and nitrogen-doped active carbon toward bifunctional catalyst for zinc-air batteries. Appl. Catal. B Environ. 260, 118188 ( 2020). https://doi.org/10.1016/j.apcatb.2019.118188
|
98. |
M. Li, F. Luo, Q. Zhang, Z. Yang, Z. Xu, Atomic layer Co 3O 4-x nanosheets as efficient and stable electrocatalyst for rechargeable zinc-air batteries. J. Catal. 381, 395-401 ( 2020). https://doi.org/10.1016/j.jcat.2019.11.020
|
99. |
S. Hosseini, A. Abbasi, L.-O. Uginet, N. Haustraete, S. Praserthdam et al., The influence of dimethyl sulfoxide as electrolyte additive on anodic dissolution of alkaline zinc-air flow battery. Sci. Rep. 9, 14958 ( 2019). https://doi.org/10.1038/s41598-019-51412-5
|
100. |
X. Wang, J. Sunarso, Q. Lu, Z. Zhou, J. Dai et al., High-performance platinum-perovskite composite bifunctional oxygen electrocatalyst for rechargeable Zn-air battery. Adv. Energy Mater. 10, 1903271 ( 2020). https://doi.org/10.1002/aenm.201903271
|
101. |
|
102. |
T. Cui, Y.-P. Wang, T. Ye, J. Wu, Z. Chen et al., Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem. Int. Ed. 61, 2115219 ( 2022). https://doi.org/10.1002/anie.202115219
|
103. |
D. Jiang, H. Wang, S. Wu, X. Sun, J. Li, Flexible zinc-air battery with high energy efficiency and freezing tolerance enabled by DMSO-based organohydrogel electrolyte. Small Methods 6, e2101043 ( 2022). https://doi.org/10.1002/smtd.202101043
|
104. |
R. Chen, X. Xu, S. Peng, J. Chen, D. Yu et al., A flexible and safe aqueous zinc-air battery with a wide operating temperature range from-20 to 70 °C. ACS Sustain. Chem. Eng. 8, 11501-11511 ( 2020). https://doi.org/10.1021/acssuschemeng.0c01111
|
105. |
Y. Zhang, H. Qin, M. Alfred, H. Ke, Y. Cai et al., Reaction modifier system enable double-network hydrogel electrolyte for flexible zinc-air batteries with tolerance to extreme cold conditions. Energy Storage Mater. 42, 88-96 ( 2021). https://doi.org/10.1016/j.ensm.2021.07.026
|
106. |
N. Sun, F. Lu, Y. Yu, L. Su, X. Gao et al., Alkaline double-network hydrogels with high conductivities, superior mechanical performances, and antifreezing properties for solid-state zinc-air batteries. ACS Appl. Mater. Interfaces 12, 11778-11788 ( 2020). https://doi.org/10.1021/acsami.0c00325
|
107. |
A. Abbasi, Y. Xu, R. Khezri, M. Etesami, C. Lin et al., Advances in characteristics improvement of polymeric membranes/separators for zinc-air batteries. Mater. Today Sustain. 18, 100126 ( 2022). https://doi.org/10.1016/j.mtsust.2022.100126
|
108. |
|
109. |
|
110. |
H. Saputra, R. Othman, A.G.E. Sutjipto, R. Muhida, MCM-41 as a new separator material for electrochemical cell: application in zinc-air system. J. Membr. Sci. 367, 152-157 ( 2011). https://doi.org/10.1016/j.memsci.2010.10.061
|
111. |
H.J. Hwang, W.S. Chi, O. Kwon, J.G. Lee, J.H. Kim et al., Selective ion transporting polymerized ionic liquid membrane separator for enhancing cycle stability and durability in secondary zinc-air battery systems. ACS Appl. Mater. Interfaces 8, 26298-26308 ( 2016). https://doi.org/10.1021/acsami.6b07841
|
112. |
H.-W. Kim, J.-M. Lim, H.-J. Lee, S.-W. Eom, Y.T. Hong et al., Artificially engineered, bicontinuous anion-conducting /-repelling polymeric phases as a selective ion transport channel for rechargeable zinc-air battery separator membranes. J. Mater. Chem. A 4, 3711-3720 ( 2016). https://doi.org/10.1039/C5TA09576J
|
113. |
F. Cheng, J. Shen, B. Peng, Y. Pan, Z. Tao et al., Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat. Chem. 3, 79-84 ( 2011). https://doi.org/10.1038/nchem.931
|
114. |
|
115. |
S.B. Park, Y.-I. Park, Fabrication of gas diffusion layer (GDL) containing microporous layer using flourinated ethylene prophylene (FEP) for proton exchange membrane fuel cell (PEMFC). Int. J. Precis. Eng. Manuf. 13, 1145-1151 ( 2012). https://doi.org/10.1007/s12541-012-0152-x
|
116. |
Y.-C. Lu, D.G. Kwabi, K.P.C. Yao, J.R. Harding, J. Zhou et al., The discharge rate capability of rechargeable Li-O 2 batteries. Energy Environ. Sci. 4, 2999-3007 ( 2011). https://doi.org/10.1039/C1EE01500A
|
117. |
J. Pan, Y.Y. Xu, H. Yang, Z. Dong, H. Liu et al., Advanced architectures and relatives of air electrodes in Zn-air batteries. Adv. Sci. 5, 1700691 ( 2018). https://doi.org/10.1002/advs.201700691
|
118. |
Y. Liu, P. He, H. Zhou, Rechargeable solid-state Li-air and Li-S batteries: materials, construction, and challenges. Adv. Energy Mater. 8, 1701602 ( 2018). https://doi.org/10.1002/aenm.201701602
|
119. |
Y. Liu, J. Li, W. Li, Y. Li, Q. Chen et al., Spinel LiMn 2O 4 nanoparticles dispersed on nitrogen-doped reduced graphene oxide nanosheets as an efficient electrocatalyst for aluminium-air battery. Int. J. Hydrog. Energy 40, 9225-9234 ( 2015). https://doi.org/10.1016/j.ijhydene.2015.05.153
|
120. |
H. Ma, B. Wang, A bifunctional electrocatalyst α-MnO 2-LaNiO 3/carbon nanotube composite for rechargeable zinc-air batteries. RSC Adv. 4, 46084-46092 ( 2014). https://doi.org/10.1039/C4RA07401G
|
121. |
R. Zhao, L. Huan, P. Gu, R. Guo, M. Chen et al., Yb, Er-doped CeO 2 nanotubes as an assistant layer for photoconversion-enhanced dye-sensitized solar cells. J. Power. Sources 331, 527-534 ( 2016). https://doi.org/10.1016/j.jpowsour.2016.09.039
|
122. |
G. Yang, J. Zhu, P. Yuan, Y. Hu, G. Qu et al., Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity. Nat. Commun. 12, 1734 ( 2021). https://doi.org/10.1038/s41467-021-21919-5
|
123. |
X. Li, H. Zhang, Y. Wang, H. Wang, J. Wang et al., Tailoring the spin state of active sites in amorphous transition metal sulfides to promote oxygen electrocatalysis. Sci. China Mater. 65, 3479-3489 ( 2022). https://doi.org/10.1007/s40843-022-2048-2
|
124. |
Y. Dai, J. Yu, C. Cheng, P. Tan, M. Ni, Mini-review of perovskite oxides as oxygen electrocatalysts for rechargeable zinc-air batteries. Chem. Eng. J. 397, 125516 ( 2020). https://doi.org/10.1016/j.cej.2020.125516
|
125. |
X. Cai, L. Lai, J. Lin, Z. Shen, Recent advances in air electrodes for Zn-air batteries: electrocatalysis and structural design. Mater. Horiz. 4, 945-976 ( 2017). https://doi.org/10.1039/C7MH00358G
|
126. |
Z. Cui, G. Fu, Y. Li, J.B. Goodenough, Ni 3FeN-supported Fe 3Pt intermetallic nanoalloy as a high-performance bifunctional catalyst for metal-air batteries. Angew. Chem. Int. Ed. 56, 9901-9905 ( 2017). https://doi.org/10.1002/anie.201705778
|
127. |
A. Zhao, J. Masa, W. Xia, A. Maljusch, M.-G. Willinger et al., Spinel Mn-Co oxide in N-doped carbon nanotubes as a bifunctional electrocatalyst synthesized by oxidative cutting. J. Am. Chem. Soc. 136, 7551-7554 ( 2014). https://doi.org/10.1021/ja502532y
|
128. |
H. Li, Q. Li, P. Wen, T.B. Williams, S. Adhikari et al., Colloidal cobalt phosphide nanocrystals as trifunctional electrocatalysts for overall water splitting powered by a zinc-air battery. Adv. Mater. 30, 1705796 ( 2018). https://doi.org/10.1002/adma.201705796
|
129. |
L. Ma, S. Chen, Z. Pei, Y. Huang, G. Liang et al., Single-site active iron-based bifunctional oxygen catalyst for a compressible and rechargeable zinc-air battery. ACS Nano 12, 1949-1958 ( 2018). https://doi.org/10.1021/acsnano.7b09064
|
130. |
H. Fei, J. Dong, Y. Feng, C.S. Allen, C. Wan et al., General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63-72 ( 2018). https://doi.org/10.1038/s41929-017-0008-y
|
131. |
W. Wang, L. Kuai, W. Cao, M. Huttula, S. Ollikkala et al., Mass-production of mesoporous MnCo 2O 4 spinels with manganese(IV)- and cobalt(II)-rich surfaces for superior bifunctional oxygen electrocatalysis. Angew. Chem. Int. Ed. 129, 15173-15177 ( 2017). https://doi.org/10.1002/ange.201708765
|
132. |
X.-R. Wang, J.-Y. Liu, Z.-W. Liu, W.-C. Wang, J. Luo et al., Graphene hybrids: identifying the key role of pyridinic-N-co bonding in synergistic electrocatalysis for reversible ORR/OER. Adv. Mater. 30, 1870164 ( 2018). https://doi.org/10.1002/adma.201870164
|
133. |
|
134. |
Q. Liu, Y. Wang, L. Dai, J. Yao, Scalable fabrication of nanoporous carbon fiber films as bifunctional catalytic electrodes for flexible Zn-air batteries. Adv. Mater. 28, 3000-3006 ( 2016). https://doi.org/10.1002/adma.201506112
|
135. |
Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang et al., Co 3O 4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10, 780-786 ( 2011). https://doi.org/10.1038/nmat3087
|
136. |
Y. Jiang, Y.P. Deng, J. Fu, D.U. Lee, R. Liang, Z.P. Cano, Y. Liu, Z. Bai, S. Hwang, L. Yang, Interpenetrating triphase cobalt-based nanocomposites as efficient bifunctional oxygen electrocatalysts for long-lasting rechargeable Zn-air batteries. Adv. Energy Mater. 8(15), 1702900 ( 2018). https://doi.org/10.1002/aenm.201702900
|
137. |
P. Chen, T. Zhou, S. Wang, N. Zhang, Y. Tong et al., Dynamic migration of surface fluorine anions on cobalt-based materials to achieve enhanced oxygen evolution catalysis. Angew. Chem. Int. Ed. 57, 15471-15475 ( 2018). https://doi.org/10.1002/anie.201809220
|
138. |
J. Masa, W. Xia, I. Sinev, A. Zhao, Z. Sun et al., Mn xO y/NC and Co xO y/NC nanoparticles embedded in a nitrogen-doped carbon matrix for high-performance bifunctional oxygen electrodes. Angew. Chem. Int. Ed. 53, 8508-8512 ( 2014). https://doi.org/10.1002/anie.201402710
|
139. |
L. Xu, C. Wang, D. Deng, Y. Tian, X. He et al., Cobalt oxide nanoparticles/nitrogen-doped graphene as the highly efficient oxygen reduction electrocatalyst for rechargeable zinc-air batteries. ACS Sustain. Chem. Eng. 8, 343-350 ( 2020). https://doi.org/10.1021/acssuschemeng.9b05492
|
140. |
G. Liu, H.G. Yang, X. Wang, L. Cheng, J. Pan et al., Visible light responsive nitrogen doped anatase TiO 2 sheets with dominant{001}facets derived from TiN. J. Am. Chem. Soc. 131, 12868-12869 ( 2009). https://doi.org/10.1021/ja903463q
|
141. |
X. Yang, A. Wolcott, G. Wang, A. Sobo, R.C. Fitzmorris et al., Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett. 9, 2331-2336 ( 2009). https://doi.org/10.1021/nl900772q
|
142. |
L. Xu, Z. Wang, J. Wang, Z. Xiao, X. Huang et al., N-doped nanoporous Co 3O 4 nanosheets with oxygen vacancies as oxygen evolving electrocatalysts. Nanotechnology 28, 165402 ( 2017). https://doi.org/10.1088/1361-6528/aa6381
|
143. |
X. Wang, Z. Liao, Y. Fu, C. Neumann, A. Turchanin et al., Confined growth of porous nitrogen-doped cobalt oxide nanoarrays as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. Energy Storage Mater. 26, 157-164 ( 2020). https://doi.org/10.1016/j.ensm.2019.12.043
|
144. |
Z. Li, S. Ji, C. Wang, H. Liu, L. Leng et al., Geometric and electronic engineering of atomically dispersed copper-cobalt diatomic sites for synergistic promotion of bifunctional oxygen electrocatalysis in zinc-air batteries. Adv. Mater. 35, e2300905 ( 2023). https://doi.org/10.1002/adma.202300905
|
145. |
Y. Liu, J. Wei, Y. Tian, S. Yan, The structure-property relationship of manganese oxides: highly efficient removal of methyl orange from aqueous solution. J. Mater. Chem. A 3, 19000-19010 ( 2015). https://doi.org/10.1039/c5ta05507e
|
146. |
J. Gu, X. Fan, X. Liu, S. Li, Z. Wang et al., Mesoporous manganese oxide with large specific surface area for high-performance asymmetric supercapacitor with enhanced cycling stability. Chem. Eng. J. 324, 35-43 ( 2017). https://doi.org/10.1016/j.cej.2017.05.014
|
147. |
Y. Gorlin, T.F. Jaramillo, A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J. Am. Chem. Soc. 132, 13612-13614 ( 2010). https://doi.org/10.1021/ja104587v
|
148. |
H. Kim, K. Min, S.E. Shim, D. Lim, S.-H. Baeck, Ni-doped Mn 2O 3 microspheres as highly efficient electrocatalyst for oxygen reduction reaction and Zn-air battery. Int. J. Hydrog. Energy 47, 2378-2388 ( 2022). https://doi.org/10.1016/j.ijhydene.2021.10.164
|
149. |
T. Li, Y. Hu, K. Liu, J. Yin, Y. Li et al., Hollow yolk-shell nanoboxes assembled by Fe-doped Mn 3O 4 nanosheets for high-efficiency electrocatalytic oxygen reduction in Zn-Air battery. Chem. Eng. J. 427, 131992 ( 2022). https://doi.org/10.1016/j.cej.2021.131992
|
150. |
A.K. Worku, D.W. Ayele, N.G. Habtu, M.A. Teshager, Z.G. Workineh, Recent progress in MnO 2-based oxygen electrocatalysts for rechargeable zinc-air batteries. Mater. Today Sustain. 13, 100072 ( 2021). https://doi.org/10.1016/j.mtsust.2021.100072
|
151. |
X.-M. Liu, X. Cui, K. Dastafkan, H.-F. Wang, C. Tang et al., Recent advances in spinel-type electrocatalysts for bifunctional oxygen reduction and oxygen evolution reactions. J. Energy Chem. 53, 290-302 ( 2021). https://doi.org/10.1016/j.jechem.2020.04.012
|
152. |
B. Chen, H. Miao, M. Yin, R. Hu, L. Xia et al., Mn-based spinels evolved from layered manganese dioxides at mild temperature for the robust flexible quasi-solid-state zinc-air batteries. Chem. Eng. J. 417, 129179 ( 2021). https://doi.org/10.1016/j.cej.2021.129179
|
153. |
W. Liu, D. Rao, J. Bao, L. Xu, Y. Lei et al., Strong coupled spinel oxide with N-rGO for high-efficiency ORR/OER bifunctional electrocatalyst of Zn-air batteries. J. Energy Chem. 57, 428-435 ( 2021). https://doi.org/10.1016/j.jechem.2020.08.066
|
154. |
C. Wei, Z. Feng, G.G. Scherer, J. Barber, Y. Shao-Horn et al., Cations in octahedral sites: a descriptor for oxygen electrocatalysis on transition-metal spinels. Adv. Mater. 29, 1606800 ( 2017). https://doi.org/10.1002/adma.201606800
|
155. |
Z.Q. Liu, H. Cheng, N. Li, T.Y. Ma, Y.Z. Su, ZnCo 2O 4 quantum dots anchored on nitrogen-doped carbon nanotubes as reversible oxygen reduction/evolution electrocatalysts. Adv. Mater. 28, 3777-3784 ( 2016). https://doi.org/10.1002/adma.201506197
|
156. |
H. Cheng, M.-L. Li, C.-Y. Su, N. Li, Z.-Q. Liu, Cu-Co bimetallic oxide quantum dot decorated nitrogen-doped carbon nanotubes: a high-efficiency bifunctional oxygen electrode for Zn-air batteries. Adv. Funct. Mater. 27, 1701833 ( 2017). https://doi.org/10.1002/adfm.201701833
|
157. |
T. Ouyang, Y.-Q. Ye, C.-Y. Wu, K. Xiao, Z.-Q. Liu, Heterostructures composed of N-doped carbon nanotubes encapsulating cobalt and β-Mo 2C nanoparticles as bifunctional electrodes for water splitting. Angew. Chem. Int. Ed. 58, 4923-4928 ( 2019). https://doi.org/10.1002/anie.201814262
|
158. |
Y. Go, K. Min, H. An, K. Kim, S. Eun Shim et al., Oxygen-vacancy-rich CoFe/CoFe 2O 4 embedded in N-doped hollow carbon spheres as a highly efficient bifunctional electrocatalyst for Zn-air batteries. Chem. Eng. J. 448, 137665 ( 2022). https://doi.org/10.1016/j.cej.2022.137665
|
159. |
J.-I. Jung, S. Park, M.-G. Kim, J. Cho, Tunable internal and surface structures of the bifunctional oxygen perovskite catalysts. Adv. Energy Mater. 5, 1501560 ( 2015). https://doi.org/10.1002/aenm.201501560
|
160. |
J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383-1385 ( 2011). https://doi.org/10.1126/science.1212858
|
161. |
A. Grimaud, K.J. May, C.E. Carlton, Y.-L. Lee, M. Risch et al., Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat. Commun. 4, 2439 ( 2013). https://doi.org/10.1038/ncomms3439
|
162. |
Z. Li, L. Lv, J. Wang, X. Ao, Y. Ruan, D. Zha, G. Hong, Q. Wu, Y. Lan, C. Wang, Engineering phosphorus-doped LaFeO 3-δ perovskite oxide as robust bifunctional oxygen electrocatalysts in alkaline solutions. Nano Energy 47, 199-209 ( 2018). https://doi.org/10.1016/j.nanoen.2018.02.051
|
163. |
D. Chen, C. Chen, Z.M. Baiyee, Z. Shao, F. Ciucci, Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices. Chem. Rev. 115, 9869-9921 ( 2015). https://doi.org/10.1021/acs.chemrev.5b00073
|
164. |
|
165. |
Y. Bu, O. Gwon, G. Nam, H. Jang, S. Kim et al., A highly efficient and robust cation ordered perovskite oxide as a bifunctional catalyst for rechargeable zinc-air batteries. ACS Nano 11, 11594-11601 ( 2017). https://doi.org/10.1021/acsnano.7b06595
|
166. |
Q. Zheng, Y. Zhang, C. Su, L. Zhao, Y. Guo, Nonnoble metal oxides for high-performance Zn-air batteries: design strategies and future challenges. Asia Pac. J. Chem. Eng. 17, e2776 ( 2022). https://doi.org/10.1002/apj.2776
|
167. |
Y. Zhu, W. Zhou, Z.-G. Chen, Y. Chen, C. Su et al., SrNb 0.1Co 0.7Fe 0.2O 3-δ perovskite as a next-generation electrocatalyst for oxygen evolution in alkaline solution. Angew. Chem. 127, 3969-3973 ( 2015). https://doi.org/10.1002/ange.201408998
|
168. |
Y. Zhu, W. Zhou, J. Yu, Y. Chen, M. Liu et al., Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions. Chem. Mater. 28, 1691-1697 ( 2016). https://doi.org/10.1021/acs.chemmater.5b04457
|
169. |
Z.-F. Huang, J. Wang, Y. Peng, C.-Y. Jung, A. Fisher et al., Design of efficient bifunctional oxygen reduction/evolution electrocatalyst: recent advances and perspectives. Adv. Energy Mater. 7, 1700544 ( 2017). https://doi.org/10.1002/aenm.201700544
|
170. |
C. Zhu, H. Li, S. Fu, D. Du, Y. Lin, Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures. Chem. Soc. Rev. 45, 517-531 ( 2016). https://doi.org/10.1039/C5CS00670H
|
171. |
M. Zhou, H.-L. Wang, S. Guo, Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials. Chem. Soc. Rev. 45, 1273-1307 ( 2016). https://doi.org/10.1039/c5cs00414d
|
172. |
Z. Xia, L. An, P. Chen, D. Xia, Non-Pt nanostructured catalysts for oxygen reduction reaction: synthesis, catalytic activity and its key factors. Adv. Energy Mater. 6, 1600458 ( 2016). https://doi.org/10.1002/aenm.201600458
|
173. |
Y.P. Zhu, C. Guo, Y. Zheng, S.Z. Qiao, Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc. Chem. Res. 50, 915-923 ( 2017). https://doi.org/10.1021/acs.accounts.6b00635
|
174. |
H. Li, W. Wan, X. Liu, H. Liu, S. Shen et al., Poplar-catkin-derived N, P Co-doped carbon microtubes as efficient oxygen electrocatalysts for Zn-air batteries. ChemElectroChem 5, 1113-1119 ( 2018). https://doi.org/10.1002/celc.201701224
|
175. |
R. Wang, Z. Chen, N. Hu, C. Xu, Z. Shen et al., Nanocarbon-based electrocatalysts for rechargeable aqueous Li/Zn-air batteries. ChemElectroChem 5, 1745-1763 ( 2018). https://doi.org/10.1002/celc.201800141
|
176. |
H.-W. Liang, Z.-Y. Wu, L.-F. Chen, C. Li, S.-H. Yu, Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: an efficient metal-free oxygen reduction electrocatalyst for zinc-air battery. Nano Energy 11, 366-376 ( 2015). https://doi.org/10.1016/j.nanoen.2014.11.008
|
177. |
H.B. Yang, J. Miao, S.F. Hung, J. Chen, H.B. Tao et al., Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst. Sci. Adv. 2, e1501122 ( 2016). https://doi.org/10.1126/sciadv.1501122
|
178. |
Z. Ma, K. Wang, Y. Qiu, X. Liu, C. Cao et al., Nitrogen and sulfur Co-doped porous carbon derived from bio-waste as a promising electrocatalyst for zinc-air battery. Energy 143, 43-55 ( 2018). https://doi.org/10.1016/j.energy.2017.10.110
|
179. |
S.-J. Ha, J. Hwang, M.-J. Kwak, J.-C. Yoon, J.-H. Jang, Graphene-encapsulated bifunctional catalysts with high activity and durability for Zn-air battery. Small 19, e2300551 ( 2023). https://doi.org/10.1002/smll.202300551
|
180. |
C.H. Choi, S.H. Park, S.I. Woo, Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity. ACS Nano 6, 7084-7091 ( 2012). https://doi.org/10.1021/nn3021234
|
181. |
J. Zhang, L. Dai, Nitrogen, phosphorus, and fluorine tri-doped graphene as a multifunctional catalyst for self-powered electrochemical water splitting. Angew. Chem. Int. Ed. 128, 13490-13494 ( 2016). https://doi.org/10.1002/ange.201607405
|
182. |
S. Yang, L. Peng, P. Huang, X. Wang, Y. Sun et al. Nitrogen, phosphorus, and sulfur Co-doped hollow carbon shell as superior metal-free catalyst for selective oxidation of aromatic alkanes. Angew. Chem. Int. Ed. 128, 4084-4088 ( 2016). https://doi.org/10.1002/ange.201600455
|
183. |
L. Wang, Y. Wang, M. Wu, Z. Wei, C. Cui et al., Nitrogen, fluorine, and boron ternary doped carbon fibers as cathode electrocatalysts for zinc-air batteries. Small 14, e1800737 ( 2018). https://doi.org/10.1002/smll.201800737
|
184. |
F. Razmjooei, K.P. Singh, M.Y. Song, J.-S. Yu, Enhanced electrocatalytic activity due to additional phosphorous doping in nitrogen and sulfur-doped graphene: a comprehensive study. Carbon 78, 257-267 ( 2014). https://doi.org/10.1016/j.carbon.2014.07.002
|
185. |
X. Zheng, J. Wu, X. Cao, J. Abbott, C. Jin et al., N-, P-, and S-doped graphene-like carbon catalysts derived from onium salts with enhanced oxygen chemisorption for Zn-air battery cathodes. Appl. Catal. B Environ. 241, 442-451 ( 2019). https://doi.org/10.1016/j.apcatb.2018.09.054
|
186. |
S. Yang, G. Chen, A.G. Ricciardulli, P. Zhang, Z. Zhang et al., Topochemical synthesis of two-dimensional transition-metal phosphides using phosphorene templates. Angew. Chem. Int. Ed. 59, 465-470 ( 2020). https://doi.org/10.1002/anie.201911428
|
187. |
Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov et al., Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad998 ( 2017). https://doi.org/10.1126/science.aad4998
|
188. |
J. Wang, W. Cui, Q. Liu, Z. Xing, A.M. Asiri et al., Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 28, 215-230 ( 2016). https://doi.org/10.1002/adma.201502696
|
189. |
Y. Hu, Y. Zhang, C. Li, L. Wang, Y. Du et al., Guided assembly of microporous/mesoporous manganese phosphates by bifunctional organophosphonic acid etching and templating. Adv. Mater. 31, e1901124 ( 2019). https://doi.org/10.1002/adma.201901124
|
190. |
S. Anantharaj, S.R. Ede, K. Sakthikumar, K. Karthick, S. Mishra et al., Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe Co, and Ni: a review. ACS Catal. 6, 8069-8097 ( 2016). https://doi.org/10.1021/acscatal.6b02479
|
191. |
D.W. Lee, J.-H. Jang, I. Jang, Y.S. Kang, S. Jang et al., Bio-derived Co 2P nanoparticles supported on nitrogen-doped carbon as promising oxygen reduction reaction electrocatalyst for anion exchange membrane fuel cells. Small 15, 1902090 ( 2019). https://doi.org/10.1002/smll.201902090
|
192. |
|
193. |
B. Liu, H. Shioyama, T. Akita, Q. Xu, Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 130, 5390-5391 ( 2008). https://doi.org/10.1021/ja7106146
|
194. |
H. Liu, J. Guan, S. Yang, Y. Yu, R. Shao et al., Metal-organic-framework-derived Co 2P nanoparticle/multi-doped porous carbon as a trifunctional electrocatalyst. Adv. Mater. 32, 2003649 ( 2020). https://doi.org/10.1002/adma.202003649
|
195. |
Q. Shi, Q. Liu, Y. Ma, Z. Fang, Z. Liang et al., High-performance trifunctional electrocatalysts based on FeCo/Co 2P hybrid nanoparticles for zinc-air battery and self-powered overall water splitting. Adv. Energy Mater. 10, 1903854 ( 2020). https://doi.org/10.1002/aenm.201903854
|
196. |
C. Xia, L. Huang, D. Yan, A.I. Douka, W. Guo et al., Electrospinning synthesis of self-standing cobalt/nanocarbon hybrid membrane for long-life rechargeable zinc-air batteries. Adv. Funct. Mater. 31, 2105021 ( 2021). https://doi.org/10.1002/adfm.202105021
|
197. |
Y. Pan, K. Sun, S. Liu, X. Cao, K. Wu et al., Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 140, 2610-2618 ( 2018). https://doi.org/10.1021/jacs.7b12420
|
198. |
J. Song, C. Zhu, B.Z. Xu, S. Fu, M.H. Engelhard et al., Water splitting: bimetallic cobalt-based phosphide zeolitic imidazolate framework: CoP x phase-dependent electrical conductivity and hydrogen atom adsorption energy for efficient overall water splitting. Adv. Energy Mater. 7, 1770011 ( 2017). https://doi.org/10.1002/aenm.201770011
|
199. |
W. Zheng, M. Liu, L.Y.S. Lee, Electrochemical instability of metal-organic frameworks: in situ spectroelectrochemical investigation of the real active sites. ACS Catal. 10, 81-92 ( 2020). https://doi.org/10.1021/acscatal.9b03790
|
200. |
|
201. |
T. Zhou, H. Shan, H. Yu, C.-A. Zhong, J. Ge et al., Nanopore confinement of electrocatalysts optimizing triple transport for an ultrahigh-power-density zinc-air fuel cell with robust stability. Adv. Mater. 32, e2003251 ( 2020). https://doi.org/10.1002/adma.202003251
|
202. |
X.F. Lu, S.L. Zhang, E. Shangguan, P. Zhang, S. Gao et al., Nitrogen-doped cobalt pyrite yolk-shell hollow spheres for long-life rechargeable Zn-air batteries. Adv. Sci. 7, 2001178 ( 2020). https://doi.org/10.1002/advs.202001178
|
203. |
P. Liu, J. Ran, B. Xia, S. Xi, D. Gao et al., Bifunctional oxygen electrocatalyst of mesoporous Ni/NiO nanosheets for flexible rechargeable Zn-air batteries. Nano-Micro Lett. 12, 68 ( 2020). https://doi.org/10.1007/s40820-020-0406-6
|
204. |
J. Wang, X. Zheng, Y. Cao, L. Li, C. Zhong et al., Developing indium-based ternary spinel selenides for efficient solid flexible Zn-air batteries and water splitting. ACS Appl. Mater. Interfaces 12, 8115-8123 ( 2020). https://doi.org/10.1021/acsami.9b18304
|
205. |
Y. Gu, G. Yan, Y. Lian, P. Qi, Q. Mu et al., MnIII-enriched α-MnO 2 nanowires as efficient bifunctional oxygen catalysts for rechargeable Zn-air batteries. Energy Storage Mater. 23, 252-260 ( 2019). https://doi.org/10.1016/j.ensm.2019.05.006
|
206. |
G. Fang, J. Gao, J. Lv, H. Jia, H. Li, W. Liu, G. Xie, Z. Chen, Y. Huang, Q. Yuan, Multi-component nanoporous alloy/(oxy) hydroxide for bifunctional oxygen electrocatalysis and rechargeable Zn-air batteries. Appl. Catal. B Environ. 268, 118431 ( 2020). https://doi.org/10.1016/j.apcatb.2019.118431
|
207. |
J. Ran, J.-F. Wu, Y. Hu, M. Shakouri, B. Xia et al., Atomic-level coupled spinel@perovskite dual-phase oxides toward enhanced performance in Zn-air batteries. J. Mater. Chem. A 10, 1506-1513 ( 2022). https://doi.org/10.1039/D1TA09457B
|
208. |
H. Miao, X. Wu, B. Chen, Q. Wang, F. Wang et al., A-site deficient/excessive effects of LaMnO 3 perovskite as bifunctional oxygen catalyst for zinc-air batteries. Electrochim. Acta 333, 135566 ( 2020). https://doi.org/10.1016/j.electacta.2019.135566
|
209. |
J. Bian, R. Su, Y. Yao, J. Wang, J. Zhou et al., Mg doped perovskite LaNiO 3 nanofibers as an efficient bifunctional catalyst for rechargeable zinc-air batteries. ACS Appl. Energy Mater. 2, 923-931 ( 2019). https://doi.org/10.1021/acsaem.8b02183
|
210. |
|
211. |
M. García-Rodríguez, J.X. Flores-Lasluisa, D. Cazorla-Amorós, E. Morallón, Metal oxide Perovskite-Carbon composites as electrocatalysts for zinc-air batteries: optimization of ball-milling mixing parameters. J. Colloid Interface Sci. 630, 269-280 ( 2023). https://doi.org/10.1016/j.jcis.2022.10.086
|
212. |
L. Xu, S. Wu, X. He, H. Wang, D. Deng et al., Interface engineering of anti-perovskite Ni 3FeN/VN heterostructure for high-performance rechargeable zinc-air batteries. Chem. Eng. J. 437, 135291 ( 2022). https://doi.org/10.1016/j.cej.2022.135291
|
213. |
J. Wang, H. Wu, D. Gao, S. Miao, G. Wang et al., High-density iron nanoparticles encapsulated within nitrogen-doped carbon nanoshell as efficient oxygen electrocatalyst for zinc-air battery. Nano Energy 13, 387-396 ( 2015). https://doi.org/10.1016/j.nanoen.2015.02.025
|
214. |
X. Xiao, X. Hu, Y. Liang, G. Zhang, X. Wang et al., Anchoring NiCo 2O 4 nanowhiskers in biomass-derived porous carbon as superior oxygen electrocatalyst for rechargeable Zn-air battery. J. Power. Sources 476, 228684 ( 2020). https://doi.org/10.1016/j.jpowsour.2020.228684
|
215. |
X. Shu, S. Chen, S. Chen, W. Pan, J. Zhang, Cobalt nitride embedded holey N-doped graphene as advanced bifunctional electrocatalysts for Zn-Air batteries and overall water splitting. Carbon 157, 234-243 ( 2020). https://doi.org/10.1016/j.carbon.2019.10.023
|
216. |
J.-T. Ren, Y.-S. Wang, L. Chen, L.-J. Gao, W.-W. Tian et al., Binary FeNi phosphides dispersed on N, P-doped carbon nanosheets for highly efficient overall water splitting and rechargeable Zn-air batteries. Chem. Eng. J. 389, 124408 ( 2020). https://doi.org/10.1016/j.cej.2020.124408
|
217. |
Z. Wu, H. Wu, T. Niu, S. Wang, G. Fu et al., Sulfurated metal-organic framework-derived nanocomposites for efficient bifunctional oxygen electrocatalysis and rechargeable Zn-air battery. ACS Sustain. Chem. Eng. 8, 9226-9234 ( 2020). https://doi.org/10.1021/acssuschemeng.0c03570
|
218. |
Y. Xu, P. Deng, G. Chen, J. Chen, Y. Yan et al., 2D nitrogen-doped carbon nanotubes/graphene hybrid as bifunctional oxygen electrocatalyst for long-life rechargeable Zn-air batteries. Adv. Funct. Mater. 30, 1906081 ( 2020). https://doi.org/10.1002/adfm.201906081
|
219. |
C. Lai, X. Liu, Y. Wang, C. Cao, Y. Yin et al., Bimetallic organic framework-derived rich pyridinic N-doped carbon nanotubes as oxygen catalysts for rechargeable Zn-air batteries. J. Power. Sources 472, 228470 ( 2020). https://doi.org/10.1016/j.jpowsour.2020.228470
|
220. |
G. Chen, Y. Xu, L. Huang, A.I. Douka, B.Y. Xia, Continuous nitrogen-doped carbon nanotube matrix for boosting oxygen electrocatalysis in rechargeable Zn-air batteries. J. Energy Chem. 55, 183-189 ( 2021). https://doi.org/10.1016/j.jechem.2020.07.012
|
221. |
V. Jose, H. Hu, E. Edison, W. Manalastas Jr., H. Ren et al., Modulation of single atomic co and Fe sites on hollow carbon nanospheres as oxygen electrodes for rechargeable Zn-air batteries. Small Methods 5, e2000751 ( 2021). https://doi.org/10.1002/smtd.202000751
|
222. |
T. Qin, J. Zhao, R. Shi, C. Ge, Q. Li, Ionic liquid derived active atomic iron sites anchored on hollow carbon nanospheres for bifunctional oxygen electrocatalysis. Chem. Eng. J. 399, 125656 ( 2020). https://doi.org/10.1016/j.cej.2020.125656
|
223. |
K. Ding, J. Hu, J. Luo, W. Jin, L. Zhao et al., Confined N-CoSe 2 active sites boost bifunctional oxygen electrocatalysis for rechargeable Zn-air batteries. Nano Energy 91, 106675 ( 2022). https://doi.org/10.1016/j.nanoen.2021.106675
|
224. |
S. Ren, X. Duan, F. Ge, Z. Chen, Q. Yang et al., Novel MOF-derived hollow CoFe alloy coupled with N-doped Ketjen Black as boosted bifunctional oxygen catalysts for Zn-air batteries. Chem. Eng. J. 427, 131614 ( 2022). https://doi.org/10.1016/j.cej.2021.131614
|
225. |
K.N. Dinh, Z. Pei, Z. Yuan, V.C. Hoang, L. Wei et al., The on-demand engineering of metal-doped porous carbon nanofibers as efficient bifunctional oxygen catalysts for high-performance flexible Zn-air batteries. J. Mater. Chem. A 8, 7297-7308 ( 2020). https://doi.org/10.1039/C9TA13651G
|
226. |
Y. Wang, M. Wu, J. Li, H. Huang, J. Qiao, In situ growth of CoP nanoparticles anchored on (N, P) Co-doped porous carbon engineered by MOFs as advanced bifunctional oxygen catalyst for rechargeable Zn-air battery. J. Mater. Chem. A 8, 19043-19049 ( 2020). https://doi.org/10.1039/d0ta06435a
|
227. |
J. Yang, L. Chang, H. Guo, J. Sun, J. Xu et al., Electronic structure modulation of bifunctional oxygen catalysts for rechargeable Zn-air batteries. J. Mater. Chem. A 8, 1229-1237 ( 2020). https://doi.org/10.1039/C9TA11654K
|
228. |
S.S. Shinde, C.-H. Lee, A. Sami, D.-H. Kim, S.-U. Lee et al., Scalable 3-D carbon nitride sponge as an efficient metal-free bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. ACS Nano 11, 347-357 ( 2017). https://doi.org/10.1021/acsnano.6b05914
|
229. |
|
230. |
L. Wei, H.E. Karahan, S. Zhai, H. Liu, X. Chen et al., Amorphous bimetallic oxide-graphene hybrids as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Adv. Mater. 29, 1701410 ( 2017). https://doi.org/10.1002/adma.201701410
|
231. |
X. Chen, J. Pu, X. Hu, Y. Yao, Y. Dou et al., Janus hollow nanofiber with bifunctional oxygen electrocatalyst for rechargeable Zn-air battery. Small 18, e2200578 ( 2022). https://doi.org/10.1002/smll.202200578
|
232. |
L.-B. Huang, L. Zhao, Y. Zhang, H. Luo, X. Zhang et al., Engineering carbon-shells of M@NC bifunctional oxygen electrocatalyst towards stable aqueous rechargeable Zn-air batteries. Chem. Eng. J. 418, 129409 ( 2021). https://doi.org/10.1016/j.cej.2021.129409
|
233. |
X. Wang, Y. Li, T. Jin, J. Meng, L. Jiao et al., Electrospun thin-walled CuCo 2O 4@C nanotubes as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Nano Lett. 17, 7989-7994 ( 2017). https://doi.org/10.1021/acs.nanolett.7b04502
|
234. |
J. Zhu, M. Xiao, G. Li, S. Li, J. Zhang et al., A triphasic bifunctional oxygen electrocatalyst with tunable and synergetic interfacial structure for rechargeable Zn-air batteries. Adv. Energy Mater. 10, 1903003 ( 2020). https://doi.org/10.1002/aenm.201903003
|
235. |
Y.-L. Zhang, Y.-K. Dai, B. Liu, X.-F. Gong, L. Zhao et al., Vacuum vapor migration strategy for atom-nanoparticle composite catalysts boosting bifunctional oxygen catalysis and rechargeable Zn-air batteries. J. Mater. Chem. A 10, 3112-3121 ( 2022). https://doi.org/10.1039/D1TA10559K
|
236. |
K. He, J. Zai, X. Liu, Y. Zhu, A. Iqbal et al., One-step construction of multi-doped nanoporous carbon-based nanoarchitecture as an advanced bifunctional oxygen electrode for Zn-Air batteries. Appl. Catal. B Environ. 265, 118594 ( 2020). https://doi.org/10.1016/j.apcatb.2020.118594
|
237. |
Q. Lu, J. Yu, X. Zou, K. Liao, P. Tan et al., Self-catalyzed growth of Co, N-codoped CNTs on carbon-encased CoS x surface: a noble-metal-free bifunctional oxygen electrocatalyst for flexible solid Zn-air batteries. Adv. Funct. Mater. 29, 1904481 ( 2019). https://doi.org/10.1002/adfm.201904481
|
238. |
X. Duan, S. Ren, N. Pan, M. Zhang, H. Zheng, MOF-derived Fe, Co@N-C bifunctional oxygen electrocatalysts for Zn-air batteries. J. Mater. Chem. A 8, 9355-9363 ( 2020). https://doi.org/10.1039/D0TA02825H
|
239. |
G.P. Kharabe, N. Manna, A. Nadeema, S.K. Singh, S. Mehta et al., A pseudo-boehmite AlOOH supported NGr composite-based air electrode for mechanically rechargeable Zn-air battery applications. J. Mater. Chem. A 10, 10014-10025 ( 2022). https://doi.org/10.1039/d2ta00546h
|
240. |
R. Khezri, S. Rezaei Motlagh, M. Etesami, A.A. Mohamad, F. Mahlendorf et al., Stabilizing zinc anodes for different configurations of rechargeable zinc-air batteries. Chem. Eng. J. 449, 137796 ( 2022). https://doi.org/10.1016/j.cej.2022.137796
|
241. |
|
242. |
S.-Y. Lee, K.-H. Choi, W.-S. Choi, Y.H. Kwon, H.-R. Jung et al., Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium-ion batteries. Energy Environ. Sci. 6, 2414-2423 ( 2013). https://doi.org/10.1039/C3EE24260A
|
243. |
X. Wang, X. Lu, B. Liu, D. Chen, Y. Tong et al., Flexible energy-storage devices: design consideration and recent progress. Adv. Mater. 26, 4763-4782 ( 2014). https://doi.org/10.1002/adma.201400910
|
244. |
|
245. |
G. Murali, J. Rawal, J.K.R. Modigunta, Y.H. Park, J.-H. Lee et al., A review on MXenes: new-generation 2D materials for supercapacitors. Sustain. Energy Fuels 5, 5672-5693 ( 2021). https://doi.org/10.1039/D1SE00918D
|
246. |
Y.-J. Heo, J.-H. Lee, S.-H. Kim, S.-J. Mun, S.-Y. Lee et al., Paper-derived millimeter-thick yarn supercapacitors enabling high volumetric energy density. ACS Appl. Mater. Interfaces 14, 42671-42682 ( 2022). https://doi.org/10.1021/acsami.2c10746
|
247. |
Y.H. Kwon, S.-W. Woo, H.-R. Jung, H.K. Yu, K. Kim et al., Cable-type flexible lithium ion battery based on hollow multi- Helix electrodes. Adv. Mater. 24, 5192-5197 ( 2012). https://doi.org/10.1002/adma.201202196
|
248. |
|
249. |
M. Koo, K.I. Park, S.H. Lee, M. Suh, D.Y. Jeon et al., Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Lett. 12, 4810-4816 ( 2012). https://doi.org/10.1021/nl302254v
|
250. |
H. Lin, W. Weng, J. Ren, L. Qiu, Z. Zhang et al., Twisted aligned carbon nanotube/silicon composite fiber anode for flexible wire-shaped lithium-ion battery. Adv. Mater. 26, 1217-1222 ( 2014). https://doi.org/10.1002/adma.201304319
|
251. |
H. Sun, H. Li, X. You, Z. Yang, J. Deng et al., Quasi-solid-state, coaxial, fiber-shaped dye-sensitized solar cells. J. Mater. Chem. A 2, 345-349 ( 2014). https://doi.org/10.1039/C3TA13818F
|
252. |
H. Sun, X. You, J. Deng, X. Chen, Z. Yang et al., A twisted wire-shaped dual-function energy device for photoelectric conversion and electrochemical storage. Angew. Chem. Int. Ed. 126, 6782-6786 ( 2014). https://doi.org/10.1002/ange.201403168
|
253. |
H. Sun, X. You, Z. Yang, J. Deng, H. Peng, Winding ultrathin, transparent, and electrically conductive carbon nanotube sheets into high-performance fiber-shaped dye-sensitized solar cells. J. Mater. Chem. A 1, 12422 ( 2013). https://doi.org/10.1039/c3ta12663c
|
254. |
Y. Li, C. Zhong, J. Liu, X. Zeng, S. Qu et al., Zinc-air batteries: atomically thin mesoporous Co 3O 4 layers strongly coupled with N-rGO nanosheets as high-performance bifunctional catalysts for 1D knittable zinc-air batteries. Adv. Mater. 30, 1870027 ( 2018). https://doi.org/10.1002/adma.201870027
|
255. |
T. Liu, J. Mou, Z. Wu, C. Lv, J. Huang et al., A facile and scalable strategy for fabrication of superior bifunctional freestanding air electrodes for flexible zinc-air batteries. Adv. Funct. Mater. 30, 2003407 ( 2020). https://doi.org/10.1002/adfm.202003407
|
256. |
J. Kuang, Y. Shen, Y. Zhang, J. Yao, J. Du et al., Synergistic bimetallic CoCu-codecorated carbon nanosheet arrays as integrated bifunctional cathodes for high-performance rechargeable/flexible zinc-air batteries. Small 19, e2207413 ( 2023). https://doi.org/10.1002/smll.202207413
|
257. |
Y. Zhang, D. Wu, F. Huang, Y. Cai, Y. Li et al., “water-in-salt” nonalkaline gel polymer electrolytes enable flexible zinc-air batteries with ultra-long operating time. Adv. Funct. Mater. 32, 2203204 ( 2022). https://doi.org/10.1002/adfm.202203204
|
258. |
D. Dong, T. Wang, Y. Sun, J. Fan, Y.-C. Lu, Hydrotropic solubilization of zinc acetates for sustainable aqueous battery electrolytes. Nat. Sustain. 6, 1474-1484 ( 2023). https://doi.org/10.1038/s41893-023-01172-y
|