1. |
H. Sies, V.V. Belousov, N.S. Chandel, M.J. Davies, D.P. Jones et al., Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 23, 499-515 ( 2022). https://doi.org/10.1038/s41580-022-00456-z
|
2. |
|
3. |
|
4. |
|
5. |
|
6. |
C. Tapeinos, A. Pandit, Physical, chemical, and biological structures based on ros-sensitive moieties that are able to respond to oxidative microenvironments. Adv. Mater. 28, 5553-5585 ( 2016). https://doi.org/10.1002/adma.201505376
|
7. |
H. Kawagishi, T. Finkel, Unraveling the truth about antioxidants: ROS and disease: finding the right balance. Nat. Med. 20, 711-713 ( 2014). https://doi.org/10.1038/nm.3625
|
8. |
S. Koo, M.G. Lee, A. Sharma, M. Li, X. Zhang et al., Harnessing GLUT1-targeted pro-oxidant ascorbate for synergistic phototherapeutics. Angew. Chem. Int. Ed. 61, e202110832 ( 2022). https://doi.org/10.1002/anie.202110832
|
9. |
D. Wei, Y. Yu, Y. Huang, Y. Jiang, Y. Zhao et al., A near-infrared-II polymer with tandem fluorophores demonstrates superior biodegradability for simultaneous drug tracking and treatment efficacy feedback. ACS Nano 15, 5428-5438 ( 2021). https://doi.org/10.1021/acsnano.1c00076
|
10. |
B. Steinhorn, A. Sorrentino, S. Badole, Y. Bogdanova, V. Belousov et al., Chemogenetic generation of hydrogen peroxide in the heart induces severe cardiac dysfunction. Nat. Commun. 9, 4044 ( 2018). https://doi.org/10.1038/s41467-018-06533-2
|
11. |
|
12. |
|
13. |
|
14. |
|
15. |
|
16. |
X. Ji, L. Ge, C. Liu, Z. Tang, Y. Xiao et al., Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite for cancer theranostics. Nat. Commun. 12, 1124 ( 2021). https://doi.org/10.1038/s41467-021-21436-5
|
17. |
|
18. |
|
19. |
X. Liu, Q. Liu, X. He, G. Yang, X. Chen et al., NIR-II-enhanced single-atom-nanozyme for sustainable accelerating bacteria-infected wound healing. Appl. Surf. Sci. 612, 155866 ( 2023). https://doi.org/10.1016/j.apsusc.2022.155866
|
20. |
|
21. |
|
22. |
X.-L. Xu, N.-N. Zhang, G.-F. Shu, D. Liu, J. Qi et al., A luminol-based self-illuminating nanocage as a reactive oxygen species amplifier to enhance deep tumor penetration and synergistic therapy. ACS Nano 15, 19394-19408 ( 2021). https://doi.org/10.1021/acsnano.1c05891
|
23. |
|
24. |
X. Zan, D. Yang, Y. Xiao, Y. Zhu, H. Chen et al., Facile general injectable gelatin/metal/tea polyphenol double nanonetworks remodel wound microenvironment and accelerate healing. Adv. Sci. ( 2023). https://doi.org/10.1002/advs.202305405
|
25. |
L. Liu, M. Bi, Y. Wang, J. Liu, X. Jiang et al., Artificial intelligence-powered microfluidics for nanomedicine and materials synthesis. Nanoscale 13, 19352-19366 ( 2021). https://doi.org/10.1039/d1nr06195j
|
26. |
M. Cao, N. Diao, X. Cai, X. Chen, Y. Xiao et al., Plant exosome nanovesicles (PENs): green delivery platforms. Mater. Horiz. 10, 3879-3894 ( 2023). https://doi.org/10.1039/d3mh01030a
|
27. |
N. Kong, H. Zhang, C. Feng, C. Liu, Y. Xiao et al., Arsenene-mediated multiple independently targeted reactive oxygen species burst for cancer therapy. Nat. Commun. 12, 4777 ( 2021). https://doi.org/10.1038/s41467-021-24961-5
|
28. |
D. Gao, T. Chen, S. Chen, X. Ren, Y. Han et al., Targeting hypoxic tumors with hybrid nanobullets for oxygen-independent synergistic photothermal and thermodynamic therapy. Nano-Micro Lett. 13, 99 ( 2021). https://doi.org/10.1007/s40820-021-00616-4
|
29. |
|
30. |
D. Zhang, D. Zhong, J. Ouyang, J. He, Y. Qi et al., Microalgae-based oral microcarriers for gut microbiota homeostasis and intestinal protection in cancer radiotherapy. Nat. Commun. 13, 1413 ( 2022). https://doi.org/10.1038/s41467-022-28744-4
|
31. |
|
32. |
P. Jangili, N. Kong, J.H. Kim, J. Zhou, H. Liu et al., DNA-damage-response-targeting mitochondria-activated multifunctional prodrug strategy for self-defensive tumor therapy. Angew. Chem. Int. Ed. 61, e202117075 ( 2022). https://doi.org/10.1002/anie.202117075
|
33. |
Z. Yang, D. Gao, X. Guo, L. Jin, J. Zheng et al., Fighting immune cold and reprogramming immunosuppressive tumor microenvironment with red blood cell membrane-camouflaged nanobullets. ACS Nano 14, 17442-17457 ( 2020). https://doi.org/10.1021/acsnano.0c07721
|
34. |
M. Deng, M. Zhang, R. Huang, H. Li, W. Lv et al., Diabetes immunity-modulated multifunctional hydrogel with cascade enzyme catalytic activity for bacterial wound treatment. Biomaterials 289, 121790 ( 2022). https://doi.org/10.1016/j.biomaterials.2022.121790
|
35. |
J. Ouyang, C. Feng, X. Zhang, N. Kong, W. Tao, Black phosphorus in biological applications: evolutionary journey from monoelemental materials to composite materials. Acc. Mater. Res. 2, 489-500 ( 2021). https://doi.org/10.1021/accountsmr.1c00039
|
36. |
W. Zhu, J. Mei, X. Zhang, J. Zhou, D. Xu et al., Photothermal nanozyme-based microneedle patch against refractory bacterial biofilm infection via iron-actuated Janus ion therapy. Adv. Mater. 34, e2207961 ( 2022). https://doi.org/10.1002/adma.202207961
|
37. |
G.W.K. Moore, S.E.L. Howell, M. Brady, X. Xu, K. McNeil, Anomalous collapses of Nares Strait ice Arches leads to enhanced export of Arctic Sea ice. Nat. Commun. 12, 1 ( 2021). https://doi.org/10.1038/s41467-020-20314-w
|
38. |
|
39. |
X. Zhou, S. Zhang, Y. Liu, J. Meng, M. Wang et al., Antibacterial cascade catalytic glutathione-depleting MOF nanoreactors. ACS Appl. Mater. Interfaces 14, 11104-11115 ( 2022). https://doi.org/10.1021/acsami.1c24231
|
40. |
Y. Sun, S. Mu, Z. Xing, J. Guo, Z. Wu et al., Catalase-mimetic artificial biocatalysts with Ru catalytic centers for ROS elimination and stem-cell protection. Adv. Mater. 34, e2206208 ( 2022). https://doi.org/10.1002/adma.202206208
|
41. |
Y. Ma, Z. Lu, B. Jia, Y. Shi, J. Dong et al., DNA origami as a nanomedicine for targeted rheumatoid arthritis therapy through reactive oxygen species and nitric oxide scavenging. ACS Nano 16, 12520-12531 ( 2022). https://doi.org/10.1021/acsnano.2c03991
|
42. |
Y. Zhao, S. Song, D. Wang, H. Liu, J. Zhang et al., Nanozyme-reinforced hydrogel as a H 2O 2-driven oxygenerator for enhancing prosthetic interface osseointegration in rheumatoid arthritis therapy. Nat. Commun. 13, 6758 ( 2022). https://doi.org/10.1038/s41467-022-34481-5
|
43. |
R. Hou, T. Lu, W. Gao, J. Shen, Z. Yu et al., Prussian blue nanozyme promotes the survival rate of skin flaps by maintaining a normal microenvironment. ACS Nano 16, 9559-9571 ( 2022). https://doi.org/10.1021/acsnano.2c02832
|
44. |
Z. Li, Y. Zhao, H. Huang, C. Zhang, H. Liu et al., A nanozyme-immobilized hydrogel with endogenous ROS-scavenging and oxygen generation abilities for significantly promoting oxidative diabetic wound healing. Adv. Healthc. Mater. 11, e2201524 ( 2022). https://doi.org/10.1002/adhm.202201524
|
45. |
D.Y. Zhang, M.R. Younis, H. Liu, S. Lei, Y. Wan et al., Multi-enzyme mimetic ultrasmall iridium nanozymes as reactive oxygen/nitrogen species scavengers for acute kidney injury management. Biomaterials 271, 120706 ( 2021). https://doi.org/10.1016/j.biomaterials.2021.120706
|
46. |
C. Zhou, L. Zhang, Z. Xu, T. Sun, M. Gong et al., Self-propelled ultrasmall AuNPs-tannic acid hybrid nanozyme with ROS-scavenging and anti-inflammatory activity for drug-induced liver injury alleviation. Small 19, e2206408 ( 2023). https://doi.org/10.1002/smll.202206408
|
47. |
M. Li, L. Huo, J. Zeng, G. Zhu, X. Liu et al., Switchable ROS scavenger/generator for MRI-guided anti-inflammation and anti-tumor therapy with enhanced therapeutic efficacy and reduced side effects. Adv. Healthc. Mater. 12, e2202043 ( 2023). https://doi.org/10.1002/adhm.202202043
|
48. |
Y. Sun, X. Sun, X. Li, W. Li, C. Li et al., A versatile nanocomposite based on nanoceria for antibacterial enhancement and protection from aPDT-aggravated inflammation via modulation of macrophage polarization. Biomaterials 268, 120614 ( 2021). https://doi.org/10.1016/j.biomaterials.2020.120614
|
49. |
T. Ma, X. Zhai, Y. Huang, M. Zhang, X. Zhao et al., A smart nanoplatform with photothermal antibacterial capability and antioxidant activity for chronic wound healing. Adv. Healthc. Mater. 10, e2100033 ( 2021). https://doi.org/10.1002/adhm.202100033
|
50. |
C. Feng, Z. Xiong, X. Sun, H. Zhou, T. Wang et al., Beyond antioxidation: harnessing the CeO 2 nanoparticles as a renoprotective contrast agent for in vivo spectral CT angiography. Biomaterials 299, 122164 ( 2023). https://doi.org/10.1016/j.biomaterials.2023.122164
|
51. |
T. Hu, Z. Gu, G.R. Williams, M. Strimaite, J. Zha et al., Layered double hydroxide-based nanomaterials for biomedical applications. Chem. Soc. Rev. 51, 6126-6176 ( 2022). https://doi.org/10.1039/d2cs00236a
|
52. |
G. Parekh, Y. Shi, J. Zheng, X. Zhang, S. Leporatti, Nano-carriers for targeted delivery and biomedical imaging enhancement. Ther. Deliv. 9, 451-468 ( 2018). https://doi.org/10.4155/tde-2018-0013
|
53. |
C. Zhang, Y. Yu, S. Shi, M. Liang, D. Yang et al., Machine learning guided discovery of superoxide dismutase nanozymes for androgenetic alopecia. Nano Lett. 22, 8592-8600 ( 2022). https://doi.org/10.1021/acs.nanolett.2c03119
|
54. |
|
55. |
G. Huang, J. Zang, L. He, H. Zhu, J. Huang et al., Bioactive nanoenzyme reverses oxidative damage and endoplasmic reticulum stress in neurons under ischemic stroke. ACS Nano 16, 431-452 ( 2022). https://doi.org/10.1021/acsnano.1c07205
|
56. |
X. Zhang, G. Parekh, B. Guo, X. Huang, Y. Dong et al., Polyphenol and self-assembly: metal polyphenol nanonetwork for drug delivery and pharmaceutical applications. Future Drug Discov. 1, 0001 ( 2019). https://doi.org/10.4155/fdd-2019-0001
|
57. |
L. He, G. Huang, H. Liu, C. Sang, X. Liu et al., Highly bioactive zeolitic imidazolate framework-8-capped nanotherapeutics for efficient reversal of reperfusion-induced injury in ischemic stroke. Sci. Adv. 6, eaay9751 ( 2020). https://doi.org/10.1126/sciadv.aay9751
|
58. |
|
59. |
|
60. |
|
61. |
|