1. |
|
2. |
|
3. |
|
4. |
D. Dattler, G. Fuks, J. Heiser, E. Moulin, A. Perrot et al., Design of collective motions from synthetic molecular switches, rotors, and motors. Chem. Rev. 120, 310-433 ( 2020). https://doi.org/10.1021/acs.chemrev.9b00288
|
5. |
R.D. Astumian, How molecular motors work - insights from the molecular machinist’s toolbox: the Nobel prize in Chemistry 2016. Chem. Sci. 8, 840-845 ( 2017). https://doi.org/10.1039/c6sc04806d
|
6. |
|
7. |
|
8. |
|
9. |
J. Fraser Stoddart, Mechanically interlocked molecules (MIMs)-molecular shuttles, switches, and machines (nobel lecture). Angew. Chem. Int. Ed. 56, 11094-11125 ( 2017). https://doi.org/10.1002/anie.201703216
|
10. |
|
11. |
|
12. |
S. Kassem, T. van Leeuwen, A.S. Lubbe, M.R. Wilson, B.L. Feringa et al., Artificial molecular motors. Chem. Soc. Rev. 46, 2592-2621 ( 2017). https://doi.org/10.1039/c7cs00245a
|
13. |
|
14. |
F. Tanaka, T. Mochizuki, X. Liang, H. Asanuma, S. Tanaka et al., Robust and photocontrollable DNA capsules using azobenzenes. Nano Lett. 10, 3560-3565 ( 2010). https://doi.org/10.1021/nl101829m
|
15. |
Y. Yang, M. Endo, K. Hidaka, H. Sugiyama, Photo-controllable DNA origami nanostructures assembling into predesigned multiorientational patterns. J. Am. Chem. Soc. 134, 20645-20653 ( 2012). https://doi.org/10.1021/ja307785r
|
16. |
Y. Suzuki, M. Endo, Y. Yang, H. Sugiyama, Dynamic assembly/disassembly processes of photoresponsive DNA origami nanostructures directly visualized on a lipid membrane surface. J. Am. Chem. Soc. 136, 1714-1717 ( 2014). https://doi.org/10.1021/ja4109819
|
17. |
M. Endo, R. Miyazaki, T. Emura, K. Hidaka, H. Sugiyama, Transcription regulation system mediated by mechanical operation of a DNA nanostructure. J. Am. Chem. Soc. 134, 2852-2855 ( 2012). https://doi.org/10.1021/ja2074856
|
18. |
H. Saito, T. Kobayashi, T. Hara, Y. Fujita, K. Hayashi et al., Synthetic translational regulation by an L7Ae-kink-turn RNP switch. Nat. Chem. Biol. 6, 71-78 ( 2010). https://doi.org/10.1038/nchembio.273
|
19. |
H. Saito, Y. Fujita, S. Kashida, K. Hayashi, T. Inoue, Synthetic human cell fate regulation by protein-driven RNA switches. Nat. Commun. 2, 160 ( 2011). https://doi.org/10.1038/ncomms1157
|
20. |
Y. Yoshimura, K. Fujimoto, Ultrafast reversible photo-cross-linking reaction: toward in situ DNA manipulation. Org. Lett. 10, 3227-3230 ( 2008). https://doi.org/10.1021/ol801112j
|
21. |
A.S. Amrutha, K.R. Sunil Kumar, N. Tamaoki, Azobenzene-based photoswitches facilitating reversible regulation of kinesin and myosin motor systems for nanotechnological applications. ChemPhotoChem 3, 337-346 ( 2019). https://doi.org/10.1002/cptc.201900037
|
22. |
H. Hess, J.L. Ross, Non-equilibrium assembly of microtubules: from molecules to autonomous chemical robots. Chem. Soc. Rev. 46, 5570-5587 ( 2017). https://doi.org/10.1039/C7CS00030H
|
23. |
H. Liu, J.J. Schmidt, G.D. Bachand, S.S. Rizk, L.L. Looger et al., Control of a biomolecular motor-powered nanodevice with an engineered chemical switch. Nat. Mater. 1, 173-177 ( 2002). https://doi.org/10.1038/nmat761
|
24. |
R. Yokokawa, S. Takeuchi, T. Kon, M. Nishiura, R. Ohkura et al., Hybrid nanotransport system by biomolecular linear motors. J. Microelectromech. Syst. 13, 612-619 ( 2004). https://doi.org/10.1109/JMEMS.2004.832193
|
25. |
K.-Y. Chen, O. Ivashenko, G.T. Carroll, J. Robertus, J.C.M. Kistemaker et al., Control of surface wettability using tripodal light-activated molecular motors. J. Am. Chem. Soc. 136, 3219-3224 ( 2014). https://doi.org/10.1021/ja412110t
|
26. |
M. Pollard, M. Lubomska, P. Rudolf, B. Feringa, Controlled rotary motion in a monolayer of molecular motors. Angew. Chem. Int. Ed. 46, 1278-1280 ( 2007). https://doi.org/10.1002/anie.200603618
|
27. |
G.T. Carroll, M.M. Pollard, R. van Delden, B.L. Feringa, Controlled rotary motion of light-driven molecular motors assembled on a gold film. Chem. Sci. 1, 97-101 ( 2010). https://doi.org/10.1039/C0SC00162G
|
28. |
G. Xie, P. Li, Z. Zhao, X.-Y. Kong, Z. Zhang et al., Bacteriorhodopsin-inspired light-driven artificial molecule motors for transmembrane mass transportation. Angew. Chem. Int. Ed. 57, 16708-16712 ( 2018). https://doi.org/10.1002/anie.201809627
|
29. |
|
30. |
S. Chen, Y. Wang, T. Nie, C. Bao, C. Wang et al., An artificial molecular shuttle operates in lipid bilayers for ion transport. J. Am. Chem. Soc. 140, 17992-17998 ( 2018). https://doi.org/10.1021/jacs.8b09580
|
31. |
|
32. |
C. Biagini, S.D.P. Fielden, D.A. Leigh, F. Schaufelberger, S. Di Stefano et al., Dissipative catalysis with a molecular machine. Angew. Chem. Int. Ed. 58, 9876-9880 ( 2019). https://doi.org/10.1002/anie.201905250
|
33. |
|
34. |
N. Koumura, E.M. Geertsema, A. Meetsma, B.L. Feringa, Light-driven molecular rotor: unidirectional rotation controlled by a single stereogenic center. J. Am. Chem. Soc. 122, 12005-12006 ( 2000). https://doi.org/10.1021/ja002755b
|
35. |
A.G. Campaña, D.A. Leigh, U. Lewandowska, One-dimensional random walk of a synthetic small molecule toward a thermodynamic sink. J. Am. Chem. Soc. 135, 8639-8645 ( 2013). https://doi.org/10.1021/ja402382n
|
36. |
|
37. |
|
38. |
|
39. |
L. Kobr, K. Zhao, Y. Shen, A. Comotti, S. Bracco et al., Inclusion compound based approach to arrays of artificial dipolar molecular rotors. A surface inclusion. J. Am. Chem. Soc. 134, 10122-10131 ( 2012). https://doi.org/10.1021/ja302173y
|
40. |
C. Lemouchi, K. Iliopoulos, L. Zorina, S. Simonov, P. Wzietek et al., Crystalline arrays of pairs of molecular rotors: correlated motion, rotational barriers, and space-inversion symmetry breaking due to conformational mutations. J. Am. Chem. Soc. 135, 9366-9376 ( 2013). https://doi.org/10.1021/ja4044517
|
41. |
X. Jiang, B. Rodríguez-Molina, N. Nazarian, M.A. Garcia-Garibay, Rotation of a bulky triptycene in the solid state: toward engineered nanoscale artificial molecular machines. J. Am. Chem. Soc. 136, 8871-8874 ( 2014). https://doi.org/10.1021/ja503467e
|
42. |
T.R. Kelly, H. De Silva, R.A. Silva, Unidirectional rotary motion in a molecular system. Nature 401, 150-152 ( 1999). https://doi.org/10.1038/43639
|
43. |
N. Koumura, R.W. Zijlstra, R.A. van Delden, N. Harada, B.L. Feringa, Light-driven monodirectional molecular rotor. Nature 401, 152-155 ( 1999). https://doi.org/10.1038/43646
|
44. |
|
45. |
G. Bringmann, A.J. Price Mortimer, P.A. Keller, M.J. Gresser, J. Garner et al., Atroposelective synthesis of axially chiral biaryl compounds. Angew. Chem. Int. Ed. 44, 5384-5427 ( 2005). https://doi.org/10.1002/anie.200462661
|
46. |
S.P. Fletcher, F. Dumur, M.M. Pollard, B.L. Feringa, A reversible, unidirectional molecular rotary motor driven by chemical energy. Science 310, 80-82 ( 2005). https://doi.org/10.1126/science.1117090
|
47. |
B.J. Dahl, B.P. Branchaud, Synthesis and characterization of a functionalized chiral biaryl capable of exhibiting unidirectional bond rotation. Tetrahedron Lett. 45, 9599-9602 ( 2004). https://doi.org/10.1016/j.tetlet.2004.10.147
|
48. |
J.C.M. Kistemaker, P. Štacko, J. Visser, B.L. Feringa, Unidirectional rotary motion in achiral molecular motors. Nat. Chem. 7, 890-896 ( 2015). https://doi.org/10.1038/nchem.2362
|
49. |
L. Greb, J.-M. Lehn, Light-driven molecular motors: imines as four-step or two-step unidirectional rotors. J. Am. Chem. Soc. 136, 13114-13117 ( 2014). https://doi.org/10.1021/ja506034n
|
50. |
R.A. van Delden, M.K. ter Wiel, M.M. Pollard, J. Vicario, N. Koumura et al., Unidirectional molecular motor on a gold surface. Nature 437, 1337-1340 ( 2005). https://doi.org/10.1038/nature04127
|
51. |
T. Kudernac, N. Ruangsupapichat, M. Parschau, B. Maciá, N. Katsonis et al., Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature 479, 208-211 ( 2011). https://doi.org/10.1038/nature10587
|
52. |
G. Pace, V. Ferri, C. Grave, M. Elbing, C. von Hänisch et al., Cooperative light-induced molecular movements of highly ordered azobenzene self-assembled monolayers. Proc. Natl. Acad. Sci. U.S.A. 104, 9937-9942 ( 2007). https://doi.org/10.1073/pnas.0703748104
|
53. |
|
54. |
V. Ferri, M. Elbing, G. Pace, M. Dickey, M. Zharnikov et al., Light-powered electrical switch based on cargo-lifting azobenzene monolayers. Angew. Chem. Int. Ed. 47, 3407-3409 ( 2008). https://doi.org/10.1002/anie.200705339
|
55. |
G. Yu, C. Han, Z. Zhang, J. Chen, X. Yan et al., Pillar[6]arene-based photoresponsive host-guest complexation. J. Am. Chem. Soc. 134, 8711-8717 ( 2012). https://doi.org/10.1021/ja302998q
|
56. |
C.-L. Lee, T. Liebig, S. Hecht, D. Bléger, J.P. Rabe, Light-induced contraction and extension of single macromolecules on a modified graphite surface. ACS Nano 8, 11987-11993 ( 2014). https://doi.org/10.1021/nn505325w
|
57. |
|
58. |
|
59. |
A. Arduini, R. Bussolati, A. Credi, S. Monaco, A. Secchi et al., Solvent- and light-controlled unidirectional transit of a nonsymmetric molecular axle through a nonsymmetric molecular wheel. Chem 18, 16203-16213 ( 2012). https://doi.org/10.1002/chem.201201625
|
60. |
D. Taura, H. Min, C. Katan, E. Yashima, Synthesis of a double-stranded spiroborate helicate bearing stilbene units and its photoresponsive behaviour. New J. Chem. 39, 3259-3269 ( 2015). https://doi.org/10.1039/c4nj01669f
|
61. |
M. Morimoto, M. Irie, A diarylethene cocrystal that converts light into mechanical work. J. Am. Chem. Soc. 132, 14172-14178 ( 2010). https://doi.org/10.1021/ja105356w
|
62. |
Z. Li, F. Hu, G. Liu, W. Xue, X. Chen et al., Photo-responsive[2]catenanes: synthesis and properties. Org. Biomol. Chem. 12, 7702-7711 ( 2014). https://doi.org/10.1039/c4ob01120a
|
63. |
M. Irie, T. Fukaminato, K. Matsuda, S. Kobatake, Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem. Rev. 114, 12174-12277 ( 2014). https://doi.org/10.1021/cr500249p
|
64. |
|
65. |
K. Fukushima, A.J. Vandenbos, T. Fujiwara, Spiropyran dimer toward photo-switchable molecular machine. Chem. Mater. 19, 644-646 ( 2007). https://doi.org/10.1021/cm061968i
|
66. |
S. Silvi, A. Arduini, A. Pochini, A. Secchi, M. Tomasulo et al., A simple molecular machine operated by photoinduced proton transfer. J. Am. Chem. Soc. 129, 13378-13379 ( 2007). https://doi.org/10.1021/ja0753851
|
67. |
L.A. Tatum, J.T. Foy, I. Aprahamian, Waste management of chemically activated switches: using a photoacid to eliminate accumulation of side products. J. Am. Chem. Soc. 136, 17438-17441 ( 2014). https://doi.org/10.1021/ja511135k
|
68. |
L. Sheng, M. Li, S. Zhu, H. Li, G. Xi et al., Hydrochromic molecular switches for water-jet rewritable paper. Nat. Commun. 5, 3044 ( 2014). https://doi.org/10.1038/ncomms4044
|
69. |
|
70. |
|
71. |
R.A. Bissell, E. Córdova, A.E. Kaifer, J.F. Stoddart, A chemically and electrochemically switchable molecular shuttle. Nature 369, 133-137 ( 1994). https://doi.org/10.1038/369133a0
|
72. |
|
73. |
|
74. |
B. Lewandowski, G. De Bo, J.W. Ward, M. Papmeyer, S. Kuschel et al., Sequence-specific peptide synthesis by an artificial small-molecule machine. Science 339, 189-193 ( 2013). https://doi.org/10.1126/science.1229753
|
75. |
|
76. |
|
77. |
|
78. |
|
79. |
M. Nishiyama, H. Higuchi, T. Yanagida, Chemomechanical coupling of the forward and backward steps of single kinesin molecules. Nat. Cell Biol. 4, 790-797 ( 2002). https://doi.org/10.1038/ncb857
|
80. |
|
81. |
|
82. |
T. Kon, T. Oyama, R. Shimo-Kon, K. Imamula, T. Shima et al., The 2.8 Å crystal structure of the dynein motor domain. Nature 484, 345-350 ( 2012). https://doi.org/10.1038/nature10955
|
83. |
A.J. Roberts, T. Kon, P.J. Knight, K. Sutoh, S.A. Burgess, Functions and mechanics of dynein motor proteins. Nat. Rev. Mol. Cell Biol. 14, 713-726 ( 2013). https://doi.org/10.1038/nrm3667
|
84. |
|
85. |
W.H. Guilford, D.E. Dupuis, G. Kennedy, J. Wu, J.B. Patlak et al., Smooth muscle and skeletal muscle myosins produce similar unitary forces and displacements in the laser trap. Biophys. J. 72, 1006-1021 ( 1997). https://doi.org/10.1016/S0006-3495(97)78753-8
|
86. |
|
87. |
M. Persson, E. Bengtsson, L. ten Siethoff, A. Månsson, Nonlinear cross-bridge elasticity and post-power-stroke events in fast skeletal muscle actomyosin. Biophys. J. 105, 1871-1881 ( 2013). https://doi.org/10.1016/j.bpj.2013.08.044
|
88. |
E.H.C. Bromley, N.J. Kuwada, M.J. Zuckermann, R. Donadini, L. Samii et al., The Tumbleweed: towards a synthetic protein motor. HFSP J. 3, 204-212 ( 2009). https://doi.org/10.2976/1.3111282
|
89. |
|
90. |
|
91. |
B. Yurke, A.J. Turberfield, A.P. Mills Jr. F. C. Simmel, J.L. Neumann, A DNA-fuelled molecular machine made of DNA. Nature 406, 605-608 ( 2000). https://doi.org/10.1038/35020524
|
92. |
|
93. |
Y. Tian, Y. He, Y. Chen, P. Yin, C. Mao, A DNAzyme that walks processively and autonomously along a one-dimensional track. Angew. Chem. Int. Ed. 44, 4355-4358 ( 2005). https://doi.org/10.1002/anie.200500703
|
94. |
|
95. |
|
96. |
|
97. |
|
98. |
J. Li, A.A. Green, H. Yan, C. Fan, Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation. Nat. Chem. 9, 1056-1067 ( 2017). https://doi.org/10.1038/nchem.2852
|
99. |
D. Han, C. Wu, M. You, T. Zhang, S. Wan et al., A cascade reaction network mimicking the basic functional steps of adaptive immune response. Nat. Chem. 7, 835-841 ( 2015). https://doi.org/10.1038/nchem.2325
|
100. |
R. Peng, L. Xu, H. Wang, Y. Lyu, D. Wang et al., DNA-based artificial molecular signaling system that mimics basic elements of reception and response. Nat. Commun. 11, 978 ( 2020). https://doi.org/10.1038/s41467-020-14739-6
|
101. |
D. Fan, E. Wang, S. Dong, Upconversion-chameleon-driven DNA computing: the DNA-unlocked inner-filter-effect (DU-IFE) for operating a multicolor upconversion luminescent DNA logic library and Its biosensing application. Mater. Horiz. 6, 375-384 ( 2019). https://doi.org/10.1039/C8MH01151F
|
102. |
|
103. |
S.F.J. Wickham, J. Bath, Y. Katsuda, M. Endo, K. Hidaka et al., A DNA-based molecular motor that can navigate a network of tracks. Nat. Nanotechnol. 7, 169-173 ( 2012). https://doi.org/10.1038/nnano.2011.253
|
104. |
G. Chatterjee, N. Dalchau, R.A. Muscat, A. Phillips, G. Seelig, A spatially localized architecture for fast and modular DNA computing. Nat. Nanotechnol. 12, 920-927 ( 2017). https://doi.org/10.1038/nnano.2017.127
|
105. |
|
106. |
W. Meng, R.A. Muscat, M.L. McKee, P.J. Milnes, A.H. El-Sagheer et al., An autonomous molecular assembler for programmable chemical synthesis. Nat. Chem. 8, 542-548 ( 2016). https://doi.org/10.1038/nchem.2495
|
107. |
D. Zhao, T.M. Neubauer, B.L. Feringa, Dynamic control of chirality in phosphine ligands for enantioselective catalysis. Nat. Commun. 6, 6652 ( 2015). https://doi.org/10.1038/ncomms7652
|
108. |
S. Kassem, A.T.L. Lee, D.A. Leigh, A. Markevicius, J. Solà, Pick-up, transport and release of a molecular cargo using a small-molecule robotic arm. Nat. Chem. 8, 138-143 ( 2016). https://doi.org/10.1038/nchem.2410
|
109. |
|
110. |
|
111. |
T. Funck, F. Nicoli, A. Kuzyk, T. Liedl, Sensing picomolar concentrations of RNA using switchable plasmonic chirality. Angew. Chem. Int. Ed. 57, 13495-13498 ( 2018). https://doi.org/10.1002/anie.201807029
|
112. |
|
113. |
|
114. |
A. Kuzyk, R. Schreiber, H. Zhang, A.O. Govorov, T. Liedl et al., Reconfigurable 3D plasmonic metamolecules. Nat. Mater. 13, 862-866 ( 2014). https://doi.org/10.1038/nmat4031
|
115. |
|
116. |
Z. Tong, L. Jin, J.M. Oliveira, R.L. Reis, Q. Zhong et al., Adaptable hydrogel with reversible linkages for regenerative medicine: dynamic mechanical microenvironment for cells. Bioact. Mater. 6, 1375-1387 ( 2020). https://doi.org/10.1016/j.bioactmat.2020.10.029
|
117. |
|
118. |
|
119. |
S.M. Landge, I. Aprahamian, A pH activated configurational rotary switch: controlling the E/ Z isomerization in hydrazones. J. Am. Chem. Soc. 131, 18269-18271 ( 2009). https://doi.org/10.1021/ja909149z
|
120. |
S. Angelos, N.M. Khashab, Y.-W. Yang, A. Trabolsi, H.A. Khatib et al., pH clock-operated mechanized nanoparticles. J. Am. Chem. Soc. 131, 12912-12914 ( 2009). https://doi.org/10.1021/ja9010157
|
121. |
Z. Meng, Y. Han, L.-N. Wang, J.-F. Xiang, S.-G. He et al., Stepwise motion in a multivalent[2](3)catenane. J. Am. Chem. Soc. 137, 9739-9745 ( 2015). https://doi.org/10.1021/jacs.5b05758
|
122. |
S. Corra, M. Curcio, M. Baroncini, S. Silvi, A. Credi, Photoactivated artificial molecular machines that can perform tasks. Adv. Mater. 32, e1906064 ( 2020). https://doi.org/10.1002/adma.201906064
|
123. |
|
124. |
|
125. |
S.J. Wezenberg, C.M. Croisetu, M.C.A. Stuart, B.L. Feringa, Reversible gel-sol photoswitching with an overcrowded alkene-based bis-urea supergelator. Chem. Sci. 7, 4341-4346 ( 2016). https://doi.org/10.1039/C6SC00659K
|
126. |
Q. Li, G. Fuks, E. Moulin, M. Maaloum, M. Rawiso et al., Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nat. Nanotechnol. 10, 161-165 ( 2015). https://doi.org/10.1038/nnano.2014.315
|
127. |
J.T. Foy, Q. Li, A. Goujon, J.-R. Colard-Itté, G. Fuks et al., Dual-light control of nanomachines that integrate motor and modulator subunits. Nat. Nanotechnol. 12, 540-545 ( 2017). https://doi.org/10.1038/nnano.2017.28
|
128. |
A. Goujon, G. Du, E. Moulin, G. Fuks, M. Maaloum et al., Hierarchical self-assembly of supramolecular muscle-like fibers. Angew. Chem. Int. Ed. 55, 703-707 ( 2016). https://doi.org/10.1002/anie.201509813
|
129. |
W.-J. Li, W. Wang, X.-Q. Wang, M. Li, Y. Ke et al., Daisy chain dendrimers: integrated mechanically interlocked molecules with stimuli-induced dimension modulation feature. J. Am. Chem. Soc. 142, 8473-8482 ( 2020). https://doi.org/10.1021/jacs.0c02475
|
130. |
J. Hou, A. Mondal, G. Long, L. de Haan, W. Zhao et al., Photo-responsive helical motion by light-driven molecular motors in a liquid-crystal network. Angew. Chem. Int. Ed. 60, 8251-8257 ( 2021). https://doi.org/10.1002/anie.202016254
|
131. |
J. Choi, J. Jeon, J. Lee, A. Nauman, J.G. Lee et al., Steerable and agile light-fueled rolling locomotors by curvature-engineered torsional torque. Adv. Sci. 10(30), 2304715 ( 2023). https://doi.org/10.1002/advs.202304715
|
132. |
|
133. |
L. Fang, M. Hmadeh, J. Wu, M.A. Olson, J.M. Spruell et al., Acid-base actuation of [c2]daisy chains. J. Am. Chem. Soc. 131(20), 7126-7134 ( 2009). https://doi.org/10.1021/ja900859d
|
134. |
P.G. Clark, M.W. Day, R.H. Grubbs, Switching and extension of a[c2]daisy-chain dimer polymer. J. Am. Chem. Soc. 131, 13631-13633 ( 2009). https://doi.org/10.1021/ja905924u
|
135. |
G. Du, E. Moulin, N. Jouault, E. Buhler, N. Giuseppone, Muscle-like supramolecular polymers: integrated motion from thousands of molecular machines. Angew. Chem. Int. Ed. 51, 12504-12508 ( 2012). https://doi.org/10.1002/anie.201206571
|
136. |
L. Gao, Z. Zhang, B. Zheng, F. Huang, Construction of muscle-like metallo-supramolecular polymers from a pillar[5]arene-based[ c2]daisy chain. Polym. Chem. 5, 5734-5739 ( 2014). https://doi.org/10.1039/C4PY00733F
|
137. |
|
138. |
A. Goujon, T. Lang, G. Mariani, E. Moulin, G. Fuks et al., Bistable[ c2]daisy chain rotaxanes as reversible muscle-like actuators in mechanically active gels. J. Am. Chem. Soc. 139, 14825-14828 ( 2017). https://doi.org/10.1021/jacs.7b06710
|
139. |
J.-C. Chang, S.-H. Tseng, C.-C. Lai, Y.-H. Liu, S.-M. Peng et al., Mechanically interlocked daisy-chain-like structures as multidimensional molecular muscles. Nat. Chem. 9, 128-134 ( 2017). https://doi.org/10.1038/nchem.2608
|
140. |
X. Yang, L. Cheng, Z. Zhang, J. Zhao, R. Bai et al., Amplification of integrated microscopic motions of high-density[2]rotaxanes in mechanically interlocked networks. Nat. Commun. 13, 6654 ( 2022). https://doi.org/10.1038/s41467-022-34286-6
|
141. |
W.-J. Li, W.-T. Xu, X.-Q. Wang, Y. Jiang, Y. Zhu et al., Photoresponsive rotaxane-branched dendrimers: from nanoscale dimension modulation to macroscopic soft actuators. J. Am. Chem. Soc. 145(26), 14498-14509 ( 2023). https://doi.org/10.1021/jacs.3c04103
|
142. |
|
143. |
F. Lancia, A. Ryabchun, A.-D. Nguindjel, S. Kwangmettatam, N. Katsonis, Mechanical adaptability of artificial muscles from nanoscale molecular action. Nat. Commun. 10, 4819 ( 2019). https://doi.org/10.1038/s41467-019-12786-2
|
144. |
M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, M. Shelley, Fast liquid-crystal elastomer swims into the dark. Nat. Mater. 3, 307-310 ( 2004). https://doi.org/10.1038/nmat1118
|
145. |
R. Eelkema, M.M. Pollard, J. Vicario, N. Katsonis, B.S. Ramon et al., Nanomotor rotates microscale objects. Nature 440, 163 ( 2006). https://doi.org/10.1038/440163a
|
146. |
S. Iamsaard, S.J. Aßhoff, B. Matt, T. Kudernac, J.J.L.M. Cornelissen et al., Conversion of light into macroscopic helical motion. Nat. Chem. 6, 229-235 ( 2014). https://doi.org/10.1038/nchem.1859
|
147. |
S. Palagi, A.G. Mark, S.Y. Reigh, K. Melde, T. Qiu et al., Structured light enables biomimetic swimming and versatile locomotion of photoresponsive softmicrorobots. Nat. Mater. 15, 647-653 ( 2016). https://doi.org/10.1038/nmat4569
|
148. |
A.H. Gelebart, D. Jan Mulder, M. Varga, A. Konya, G. Vantomme et al., Making waves in a photoactive polymer film. Nature 546, 632-636 ( 2017). https://doi.org/10.1038/nature22987
|
149. |
J. Chen, F.K. Leung, M.C.A. Stuart, T. Kajitani, T. Fukushima et al., Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nat. Chem. 10, 132-138 ( 2018). https://doi.org/10.1038/nchem.2887
|
150. |
A. Kakugo, S. Sugimoto, J.P. Gong, Y. Osada, Gel machines constructed from chemically cross-linked actins and myosins. Adv. Mater. 14, 1124 ( 2002). https://doi.org/10.1002/1521-4095
|
151. |
A. Kakugo, S. Sugimoto, K. Shikinaka, J.P. Gong, Y. Osada, Characteristics of chemically cross-linked myosin gels. J. Biomater. Sci. Polym. Ed. 16, 203-218 ( 2005). https://doi.org/10.1163/1568562053115408
|
152. |
K. Shikinaka, S. Takaoka, A. Kakugo, Y. Osada, J.P. Gong, ATP-fueled soft gel machine with well-oriented structure constructed using actin-myosin system. J. Appl. Polym. Sci. 114, 2087-2092 ( 2009). https://doi.org/10.1002/app.30821
|
153. |
H. Jia, J. Flommersfeld, M. Heymann, S.K. Vogel, H.G. Franquelim et al., 3D printed protein-based robotic structures actuated by molecular motor assemblies. Nat. Mater. 21, 703-709 ( 2022). https://doi.org/10.1038/s41563-022-01258-6
|
154. |
T. Nitta, Y. Wang, Z. Du, K. Morishima, Y. Hiratsuka, A printable active network actuator built from an engineered biomolecular motor. Nat. Mater. 20, 1149-1155 ( 2021). https://doi.org/10.1038/s41563-021-00969-6
|
155. |
|
156. |
K. Yoshida, K. Kohno, Y. Hiratsuka, H. Onoe, Macroscale collagen-actomyosin hybrid actuator built from bioderived materials. Adv. Funct. Mater. 33, 2307766 ( 2023). https://doi.org/10.1002/adfm.202307766
|
157. |
J. Zhang, B. Gao, B. Ye, Z. Sun, Z. Qian et al., Mitochondrial-targeted delivery of polyphenol-mediated antioxidases complexes against pyroptosis and inflammatory diseases. Adv. Mater. 35, e2208571 ( 2023). https://doi.org/10.1002/adma.202208571
|
158. |
W. Danowski, T. van Leeuwen, S. Abdolahzadeh, D. Roke, W.R. Browne et al., Unidirectional rotary motion in a metal-organic framework. Nat. Nanotechnol. 14, 488-494 ( 2019). https://doi.org/10.1038/s41565-019-0401-6
|
159. |
S. Tsitkov, Y. Song, J.B. Rodriguez 3rd., Y. Zhang, H. Hess, Kinesin-recruiting microtubules exhibit collective gliding motion while forming motor trails. ACS Nano 14, 16547-16557 ( 2020). https://doi.org/10.1021/acsnano.0c03263
|
160. |
S. Araki, K. Beppu, A.M.R. Kabir, A. Kakugo, Y.T. Maeda, Controlling collective motion of kinesin-driven microtubules via patterning of topographic landscapes. Nano Lett. 21, 10478-10485 ( 2021). https://doi.org/10.1021/acs.nanolett.1c03952
|
161. |
H. Inaba, Y. Sueki, M. Ichikawa, A.M.R. Kabir, T. Iwasaki et al., Generation of stable microtubule superstructures by binding of peptide-fused tetrameric proteins to inside and outside. Sci. Adv. 8, eabq3817 ( 2022). https://doi.org/10.1126/sciadv.abq3817
|
162. |
|
163. |
V. Schaller, C.A. Weber, B. Hammerich, E. Frey, A.R. Bausch, Frozen steady states in active systems. Proc. Natl. Acad. Sci. U.S.A. 108, 19183-19188 ( 2011). https://doi.org/10.1073/pnas.1107540108
|
164. |
|
165. |
|
166. |
|
167. |
H. Hess, J. Clemmens, C. Brunner, R. Doot, S. Luna et al., Molecular self-assembly of “nanowires” and “nanospools” using active transport. Nano Lett. 5, 629-633 ( 2005). https://doi.org/10.1021/nl0478427
|
168. |
M.S. Islam, K. Kuribayashi-Shigetomi, A.M.R. Kabir, D. Inoue, K. Sada et al., Role of confinement in the active self-organization of kinesin-driven microtubules. Sens. Actuat. B Chem. 247, 53-60 ( 2017). https://doi.org/10.1016/j.snb.2017.03.006
|
169. |
O. Idan, A. Lam, J. Kamcev, J. Gonzales, A. Agarwal et al., Nanoscale transport enables active self-assembly of millimeter-scale wires. Nano Lett. 12, 240-245 ( 2012). https://doi.org/10.1021/nl203450h
|
170. |
A. Saito, T.I. Farhana, A.M.R. Kabir, D. Inoue, A. Konagaya et al., Understanding the emergence of collective motion of microtubules driven by kinesins: role of concentration of microtubules and depletion force. RSC Adv. 7, 13191-13197 ( 2017). https://doi.org/10.1039/C6RA27449H
|
171. |
D. Inoue, B. Mahmot, A.M.R. Kabir, T.I. Farhana, K. Tokuraku et al., Depletion force induced collective motion of microtubules driven by kinesin. Nanoscale 7, 18054-18061 ( 2015). https://doi.org/10.1039/C5NR02213D
|
172. |
Y. Sumino, K.H. Nagai, Y. Shitaka, D. Tanaka, K. Yoshikawa et al., Large-scale vortex lattice emerging from collectively moving microtubules. Nature 483, 448-452 ( 2012). https://doi.org/10.1038/nature10874
|
173. |
|
174. |
P. Bieling, I.A. Telley, J. Piehler, T. Surrey, Processive kinesins require loose mechanical coupling for efficient collective motility. EMBO Rep. 9, 1121-1127 ( 2008). https://doi.org/10.1038/embor.2008.169
|
175. |
|
176. |
|
177. |
M. Akter, J.J. Keya, A.M.R. Kabir, H. Asanuma, K. Murayama et al., Photo-regulated trajectories of gliding microtubules conjugated with DNA. Chem. Commun. 56, 7953-7956 ( 2020). https://doi.org/10.1039/d0cc03124k
|
178. |
|
179. |
Y. Sato, Y. Hiratsuka, I. Kawamata, S. Murata, S.-I.M. Nomura, Micrometer-sized molecular robot changes its shape in response to signal molecules. Sci. Robot. 2, eaal3735 ( 2017). https://doi.org/10.1126/scirobotics.aal3735
|
180. |
K. Matsuda, A.M.R. Kabir, N. Akamatsu, A. Saito, S. Ishikawa et al., Artificial smooth muscle model composed of hierarchically ordered microtubule asters mediated by DNA origami nanostructures. Nano Lett. 19, 3933-3938 ( 2019). https://doi.org/10.1021/acs.nanolett.9b01201
|
181. |
|
182. |
|
183. |
R. Ibusuki, T. Morishita, A. Furuta, S. Nakayama, M. Yoshio et al., Programmable molecular transport achieved by engineering protein motors to move on DNA nanotubes. Science 375, 1159-1164 ( 2022). https://doi.org/10.1126/science.abj5170
|
184. |
Z. Liu, W. Zhou, C. Qi, T. Kong, Interface engineering in multiphase systems toward synthetic cells and organelles: from soft matter fundamentals to biomedical applications. Adv. Mater. 32, e2002932 ( 2020). https://doi.org/10.1002/adma.202002932
|
185. |
|
186. |
|
187. |
D. Wang, G. Zhao, C.H. Chen, H. Zhang, R.M. Duan et al., One-step fabrication of dual optically/magnetically modulated walnut-like micromotor. Langmuir 35(7), 2801-2807 ( 2019). https://doi.org/10.1021/acs.langmuir.8b02904
|
188. |
R. Das, V.S. Sypu, H.K. Paumo, M. Bhaumik, V. Maharaj et al., Silver decorated magnetic nanocomposite (Fe 3O 4@PPy-MAA/Ag) as highly active catalyst towards reduction of 4-nitrophenol and toxic organic dyes. Appl. Catal. B Environ. 244, 546-558 ( 2019). https://doi.org/10.1016/j.apcatb.2018.11.073
|
189. |
H. Park, A. May, L. Portilla, H. Dietrich, F. Münch et al., Magnetite nanoparticles as efficient materials for removal of glyphosate from water. Nat. Sustain. 3, 129-135 ( 2020). https://doi.org/10.1038/s41893-019-0452-6
|
190. |
Y. Ren, H. Li, J. Liu, M. Zhou, J. Pan, Crescent-shaped micromotor sorbents with sulfonic acid functionalized convex surface: the synthesis by A Janus emulsion strategy and adsorption for Li+. J. Hazard. Mater. 422, 126870 ( 2022). https://doi.org/10.1016/j.jhazmat.2021.126870
|
191. |
Z.C. Chen, J.W. Jiang, X. Wang, H. Zhang, B. Song et al., Visible light-regulated bivo 4-based micromotor with biomimetic “predator-bait” behavior. J. Mater. Sci. 57(6), 4092-4103 ( 2022). https://doi.org/10.1007/s10853-022-06882-w
|
192. |
Y. Ji, X. Lin, Z. Wu, Y. Wu, W. Gao et al., Macroscale chemotaxis from a swarm of bacteria-mimicking nanoswimmers. Angew. Chem. Int. Ed. 58, 12200-12205 ( 2019). https://doi.org/10.1002/anie.201907733
|
193. |
|
194. |
Q. Wang, L. Yang, B. Wang, E. Yu, J. Yu et al., Collective behavior of reconfigurable magnetic droplets via dynamic self-assembly. ACS Appl. Mater. Interfaces 11, 1630-1637 ( 2019). https://doi.org/10.1021/acsami.8b17402
|
195. |
T. Bhuyan, A.K. Singh, D. Dutta, A. Unal, S.S. Ghosh et al., Magnetic field guided chemotaxis of iMushbots for targeted anticancer therapeutics. ACS Biomater. Sci. Eng. 3, 1627-1640 ( 2017). https://doi.org/10.1021/acsbiomaterials.7b00086
|
196. |
D. Liu, R. Guo, S. Mao, Y. Huang, B. Wang et al., 3D magnetic field guided sunflower-like nanocatalytic active swarm targeting patients-derived organoids. Nano Res. 16, 1021-1032 ( 2023). https://doi.org/10.1007/s12274-022-4851-z
|
197. |
H. Lee, D.-I. Kim, S.-H. Kwon, S. Park, Magnetically actuated drug delivery helical microrobot with magnetic nanoparticle retrieval ability. ACS Appl. Mater. Interfaces 13, 19633-19647 ( 2021). https://doi.org/10.1021/acsami.1c01742
|
198. |
S. Jeon, B.C. Park, S. Lim, H.Y. Yoon, Y.S. Jeon et al., Heat-generating iron oxide multigranule nanoclusters for enhancing hyperthermic efficacy in tumor treatment. ACS Appl. Mater. Interfaces 12, 33483-33491 ( 2020). https://doi.org/10.1021/acsami.0c07419
|
199. |
A. Servant, F. Qiu, M. Mazza, K. Kostarelos, B.J. Nelson, Controlled in vivo swimming of a swarm of bacteria-like microrobotic flagella. Adv. Mater. 27, 2981-2988 ( 2015). https://doi.org/10.1002/adma.201404444
|
200. |
Q. Wang, X. Du, D. Jin, L. Zhang, Real-time ultrasound Doppler tracking and autonomous navigation of a miniature helical robot for accelerating thrombolysis in dynamic blood flow. ACS Nano 16, 604-616 ( 2022). https://doi.org/10.1021/acsnano.1c07830
|
201. |
L. Xie, X. Pang, X. Yan, Q. Dai, H. Lin et al., Photoacoustic imaging-trackable magnetic microswimmers for pathogenic bacterial infection treatment. ACS Nano 14, 2880-2893 ( 2020). https://doi.org/10.1021/acsnano.9b06731
|
202. |
|
203. |
|
204. |
D. Jin, J. Yu, K. Yuan, L. Zhang, Mimicking the structure and function of ant bridges in a reconfigurable microswarm for electronic applications. ACS Nano 13, 5999-6007 ( 2019). https://doi.org/10.1021/acsnano.9b02139
|
205. |
|
206. |
F. Mou, X. Li, Q. Xie, J. Zhang, K. Xiong et al., Active micromotor systems built from passive particles with biomimetic predator-prey interactions. ACS Nano 14, 406-414 ( 2020). https://doi.org/10.1021/acsnano.9b05996
|
207. |
S. Campuzano, J. Orozco, D. Kagan, M. Guix, W. Gao et al., Bacterial isolation by lectin-modified microengines. Nano Lett. 12, 396-401 ( 2012). https://doi.org/10.1021/nl203717q
|
208. |
C. Liang, C. Zhan, F. Zeng, D. Xu, Y. Wang et al., Bilayer tubular micromotors for simultaneous environmental monitoring and remediation. ACS Appl. Mater. Interfaces 10, 35099-35107 ( 2018). https://doi.org/10.1021/acsami.8b10921
|
209. |
Y. Huang, D. Liu, R. Guo, B. Wang, Z. Liu et al., Magnetic-controlled dandelion-like nanocatalytic swarm for targeted biofilm elimination. Nanoscale 14, 6497-6506 ( 2022). https://doi.org/10.1039/d2nr00765g
|
210. |
M.E. Ibele, P.E. Lammert, V.H. Crespi, A. Sen, Emergent, collective oscillations of self-mobile particles and patterned surfaces under redox conditions. ACS Nano 4, 4845-4851 ( 2010). https://doi.org/10.1021/nn101289p
|
211. |
W. Duan, R. Liu, A. Sen, Transition between collective behaviors of micromotors in response to different stimuli. J. Am. Chem. Soc. 135, 1280-1283 ( 2013). https://doi.org/10.1021/ja3120357
|
212. |
|
213. |
S. Du, H. Wang, C. Zhou, W. Wang, Z. Zhang, Motor and rotor in one: light-active ZnO/Au twinned rods of tunable motion modes. J. Am. Chem. Soc. 142, 2213-2217 ( 2020). https://doi.org/10.1021/jacs.9b13093
|
214. |
|
215. |
K. Bian, X. Zhang, K. Liu, T. Yin, H. Liu et al., Peptide-directed hierarchical mineralized silver nanocages for anti-tumor photothermal therapy. ACS Sustain. Chem. Eng. 6, 7574-7588 ( 2018). https://doi.org/10.1021/acssuschemeng.8b00415
|
216. |
Y. Hu, W. Liu, Y. Sun, Multiwavelength phototactic micromotor with controllable swarming motion for “chemistry-on-the-fly.” ACS Appl. Mater. Interfaces 12, 41495-41505 ( 2020). https://doi.org/10.1021/acsami.0c11443
|
217. |
Z. Lin, X. Fan, M. Sun, C. Gao, Q. He et al., Magnetically actuated peanut colloid motors for cell manipulation and patterning. ACS Nano 12, 2539-2545 ( 2018). https://doi.org/10.1021/acsnano.7b08344
|
218. |
F. Soto, A. Martin, S. Ibsen, M. Vaidyanathan, V. Garcia-Gradilla et al., Acoustic microcannons: toward advanced microballistics. ACS Nano 10, 1522-1528 ( 2016). https://doi.org/10.1021/acsnano.5b07080
|
219. |
W. Wang, L.A. Castro, M. Hoyos, T.E. Mallouk, Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano 6, 6122-6132 ( 2012). https://doi.org/10.1021/nn301312z
|
220. |
H. Inaba, M. Yamada, M.R. Rashid, A.M.R. Kabir, A. Kakugo et al., Magnetic force-induced alignment of microtubules by encapsulation of CoPt nanoparticles using a tau-derived peptide. Nano Lett. 20, 5251-5258 ( 2020). https://doi.org/10.1021/acs.nanolett.0c01573
|
221. |
H. Xie, M. Sun, X. Fan, Z. Lin, W. Chen et al., Reconfigurable magnetic microrobot swarm: multimode transformation, locomotion, and manipulation. Sci. Robot. 4, eaav8006 ( 2019). https://doi.org/10.1126/scirobotics.aav8006
|
222. |
|
223. |
A. Kuzuya, S-I M. Nomura, T. Toyota, T. Nakakuki, S. Murata, From molecular robotics to molecular cybernetics: the first step toward chemical artificial intelligence. IEEE Trans. Mol. Biol. Multi Scale Commun. 9, 354-363 ( 2023). https://doi.org/10.1109/TMBMC.2023.3304243
|