1. |
Z. Li, A.W. Robertson, Electrolyte engineering strategies for regulation of the Zn metal anode in aqueous Zn-ion batteries. Battery Energy 2(1), 20220029 ( 2023). https://doi.org/10.1002/bte2.20220029
|
2. |
C. Nie, G. Wang, D. Wang, M. Wang, X. Gao et al., Recent progress on Zn anodes for advanced aqueous zinc-ion batteries. Adv. Energy Mater. 13(28), 2300606 ( 2023). https://doi.org/10.1002/aenm.202300606
|
3. |
|
4. |
Q. Wen, H. Fu, R.-D. Cui, H.-Z. Chen, R.-H. Ji et al., Recent advances in interfacial modification of zinc anode for aqueous rechargeable zinc ion batteries. J. Energy Chem. 83, 287-303 ( 2023). https://doi.org/10.1016/j.jechem.2023.03.059
|
5. |
N.S. Alghamdi, M. Rana, X. Peng, Y. Huang, J. Lee et al., Zinc-bromine rechargeable batteries: From device configuration, electrochemistry, material to performance evaluation. Nano-Micro Lett. 15, 209 ( 2023). https://doi.org/10.1007/s40820-023-01174-7
|
6. |
J.Y. Kim, G. Liu, R.E.A. Ardhi, J. Park, H. Kim et al., Stable Zn metal anodes with limited Zn-doping in MgF 2 interphase for fast and uniformly ionic flux. Nano-Micro Lett. 14, 46 ( 2022). https://doi.org/10.1007/s40820-021-00788-z
|
7. |
|
8. |
H. Yu, D. Chen, T. Zhang, M. Fu, J. Cai et al., Insight on the double-edged sword role of water molecules in the anode of aqueous zinc-ion batteries. Small Struct. 3(12), 2200143 ( 2022). https://doi.org/10.1002/sstr.202200143
|
9. |
D. Yao, D. Yu, S. Yao, Z. Lu, G. Li et al., Interfacial engineering boosts highly reversible zinc metal for aqueous zinc-ion batteries. ACS Appl. Mater. Interfaces 15(13), 16584-16592 ( 2023). https://doi.org/10.1021/acsami.2c20075
|
10. |
L. Wang, W. Huang, W. Guo, Z.H. Guo, C. Chang et al., Sn alloying to inhibit hydrogen evolution of Zn metal anode in rechargeable aqueous batteries. Adv. Funct. Mater. 32(1), 2108533 ( 2022). https://doi.org/10.1002/adfm.202108533
|
11. |
J. Chen, W. Zhao, J. Jiang, X. Zhao, S. Zheng et al., Challenges and perspectives of hydrogen evolution-free aqueous Zn-ion batteries. Energy Storage Mater. 59, 102767 ( 2023). https://doi.org/10.1016/j.ensm.2023.04.006
|
12. |
C.-C. Kao, C. Ye, J. Hao, J. Shan, H. Li et al., Suppressing hydrogen evolution via anticatalytic interfaces toward highly efficient aqueous Zn-ion batteries. ACS Nano 17(4), 3948-3957 ( 2023). https://doi.org/10.1021/acsnano.2c12587
|
13. |
A. Bayaguud, Y. Fu, C. Zhu, Interfacial parasitic reactions of zinc anodes in zinc ion batteries: Underestimated corrosion and hydrogen evolution reactions and their suppression strategies. J. Energy Chem. 64, 246-262 ( 2022). https://doi.org/10.1016/j.jechem.2021.04.016
|
14. |
Q. Yang, L. Li, T. Hussain, D. Wang, L. Hui et al., Stabilizing interface pH by N-modified graphdiyne for dendrite-free and high-rate aqueous Zn-ion batteries. Angew. Chem. Int. Ed. 61(6), e202112304 ( 2022). https://doi.org/10.1002/anie.202112304
|
15. |
Y. Gong, B. Wang, H. Ren, D. Li, D. Wang et al., Recent advances in structural optimization and surface modification on current collectors for high-performance zinc anode: Principles, strategies, and challenges. Nano-Micro Lett. 15, 208 ( 2023). https://doi.org/10.1007/s40820-023-01177-4
|
16. |
J. Hao, L. Yuan, Y. Zhu, M. Jaroniec, S.-Z. Qiao, Triple-function electrolyte regulation toward advanced aqueous Zn-ion batteries. Adv. Mater. 34(44), e2206963 ( 2022). https://doi.org/10.1002/adma.202206963
|
17. |
J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: Challenges, strategies, and perspectives. Nano-Micro Lett. 14, 42 ( 2022). https://doi.org/10.1007/s40820-021-00782-5
|
18. |
C. Yan, Y. Wang, X. Deng, Y. Xu, Cooperative chloride hydrogel electrolytes enabling ultralow-temperature aqueous zinc ion batteries by the hofmeister effect. Nano-Micro Lett. 14, 98 ( 2022). https://doi.org/10.1007/s40820-022-00836-2
|
19. |
H. Jin, S. Dai, K. Xie, Y. Luo, K. Liu et al., Regulating interfacial desolvation and deposition kinetics enables durable Zn anodes with ultrahigh utilization of 80%. Small 18(4), e2106441 ( 2022). https://doi.org/10.1002/smll.202106441
|
20. |
X. Lu, C. Zhao, A. Chen, Z. Guo, N. Liu et al., Reducing Zn-ion concentration gradient by SO 42--immobilized interface coating for dendrite-free Zn anode. Chem. Eng. J. 451, 138772 ( 2023). https://doi.org/10.1016/j.cej.2022.138772
|
21. |
K. Wu, J. Yi, X. Liu, Y. Sun, J. Cui et al., Regulating Zn deposition via an artificial solid-electrolyte interface with aligned dipoles for long life Zn anode. Nano-Micro Lett. 13, 79 ( 2021). https://doi.org/10.1007/s40820-021-00599-2
|
22. |
|
23. |
Y. Zhang, X. Yang, Y. Hu, K. Hu, X. Lin et al., Highly strengthened and toughened Zn-Li-Mn alloys as long-cycling life and dendrite-free Zn anode for aqueous zinc-ion batteries. Small 18(17), e2200787 ( 2022). https://doi.org/10.1002/smll.202200787
|
24. |
H. Meng, Q. Ran, T.-Y. Dai, H. Shi, S.-P. Zeng et al., Surface-alloyed nanoporous zinc as reversible and stable anodes for high-performance aqueous zinc-ion battery. Nano-Micro Lett. 14, 128 ( 2022). https://doi.org/10.1007/s40820-022-00867-9
|
25. |
|
26. |
Z. Zhu, H. Jin, K. Xie, S. Dai, Y. Luo et al., Molecular-level Zn-ion transfer pump specifically functioning on (002) facets enables durable Zn anodes. Small 18(49), e2204713 ( 2022). https://doi.org/10.1002/smll.202204713
|
27. |
|
28. |
X. Song, L. Bai, C. Wang, D. Wang, K. Xu et al., Synergistic cooperation of Zn(002)texture and amorphous zinc phosphate for dendrite-free Zn anodes. ACS Nano 17(15), 15113-15124 ( 2023). https://doi.org/10.1021/acsnano.3c04343
|
29. |
Y. Hao, D. Feng, L. Hou, T. Li, Y. Jiao et al., Gel electrolyte constructing Zn (002) deposition crystal plane toward highly stable Zn anode. Adv. Sci. 9(7), e2104832 ( 2022). https://doi.org/10.1002/advs.202104832
|
30. |
M. Zhou, S. Guo, J. Li, X. Luo, Z. Liu et al., Surface-preferred crystal plane for a stable and reversible zinc anode. Adv. Mater. 33(21), e2100187 ( 2021). https://doi.org/10.1002/adma.202100187
|
31. |
|
32. |
Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov et al., Combining theory and experiment in electrocatalysis: Insights into materials design. Science 355(6312), eaad4998 ( 2017). https://doi.org/10.1126/science.aad4998
|
33. |
|
34. |
J.K. Nørskov, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen et al., Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23 ( 2005). https://doi.org/10.1149/1.1856988
|
35. |
R. Kronberg, K. Laasonen, Reconciling the experimental and computational hydrogen evolution activities of Pt(111) through DFT-based constrained MD simulations. ACS Catal. 11(13), 8062-8078 ( 2021). https://doi.org/10.1021/acscatal.1c00538
|
36. |
|
37. |
J. Hafner, Ab-initio simulations of materials using VASP: Density-functional theory and beyond. J. Comput. Chem. 29(13), 2044-2078 ( 2008). https://doi.org/10.1002/jcc.21057
|
38. |
|
39. |
X.-G. Xiong, T. Yanai, Projector augmented wave method incorporated into gauss-type atomic orbital based density functional theory. J. Chem. Theory Comput. 13(7), 3236-3249 ( 2017). https://doi.org/10.1021/acs.jctc.7b00404
|
40. |
G. Henkelman, B.P. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113(22), 9901-9904 ( 2000). https://doi.org/10.1063/1.1329672
|
41. |
G. Henkelman, H. Jónsson, A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 111(15), 7010-7022 ( 1999). https://doi.org/10.1063/1.480097
|
42. |
F. Calle-Vallejo, J.I. Martínez, J.M. García-Lastra, P. Sautet, D. Loffreda, Fast prediction of adsorption properties for platinum nanocatalysts with generalized coordination numbers. Angew. Chem. Int. Ed. 53(32), 8316-8319 ( 2014). https://doi.org/10.1002/anie.201402958
|
43. |
|
44. |
A. Aramata, S. Taguchi, T. Fukuda, M. Nakamura, G. Horányi, Underpotential deposition of zinc ions at single crystal electrodes and the effect of the adsorbed anions. Electrochim. Acta 44, 999-1007 ( 1998). https://doi.org/10.1016/S0013-4686(98)00204-7
|
45. |
|
46. |
G. Feng, F. Ning, J. Song, H. Shang, K. Zhang et al., Sub-2 nm ultrasmall high-entropy alloy nanoparticles for extremely superior electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 143(41), 17117-17127 ( 2021). https://doi.org/10.1021/jacs.1c07643
|
47. |
E. Skúlason, V. Tripkovic, M.E. Björketun, S. Gudmundsdóttir, G. Karlberg et al., Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C 114(42), 18182-18197 ( 2010). https://doi.org/10.1021/jp1048887
|
48. |
H. Cao, Q. Wang, Z. Zhang, H.M. Yan, H. Zhao et al., Engineering single-atom electrocatalysts for enhancing kinetics of acidic Volmer reaction. J. Am. Chem. Soc. 145(24), 13038-13047 ( 2023). https://doi.org/10.1021/jacs.2c13418
|
49. |
R. Kronberg, H. Lappalainen, K. Laasonen, Revisiting the Volmer-Heyrovský mechanism of hydrogen evolution on a nitrogen doped carbon nanotube: constrained molecular dynamics versus the nudged elastic band method. Phys. Chem. Chem. Phys. 22(19), 10536-10549 ( 2020). https://doi.org/10.1039/C9CP06474E
|
50. |
Y. Tian, J. Hong, D. Cao, S. You, Y. Song et al., Visualizing Eigen/Zundel cations and their interconversion in monolayer water on metal surfaces. Science 377(6603), 315-319 ( 2022). https://doi.org/10.1126/science.abo0823
|
51. |
D. Yuan, J. Zhao, H. Ren, Y. Chen, R. Chua et al., Anion texturing towards dendrite-free Zn anode for aqueous rechargeable batteries. Angew. Chem. Int. Ed. 60(13), 7213-7219 ( 2021). https://doi.org/10.1002/anie.202015488
|
52. |
J. Zhang, W. Huang, L. Li, C. Chang, K. Yang et al., Nonepitaxial electrodeposition of (002)-textured Zn anode on textureless substrates for dendrite-free and hydrogen evolution-suppressed Zn batteries. Adv. Mater. 35(21), e2300073 ( 2023). https://doi.org/10.1002/adma.202300073
|
53. |
X. Zhang, J. Li, D. Liu, M. Liu, T. Zhou et al., Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer. Energy Environ. Sci. 14(5), 3120-3129 ( 2021). https://doi.org/10.1039/D0EE03898A
|