1. |
|
2. |
|
3. |
J. Qiao, X. Kong, Z.-X. Hu, F. Yang, W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 ( 2014). https://doi.org/10.1038/ncomms5475
|
4. |
|
5. |
J. Cheng, L. Gao, T. Li, S. Mei, C. Wang et al., Two-dimensional black phosphorus nanomaterials: emerging advances in electrochemical energy storage science. Nano-Micro Lett. 12, 179 ( 2020). https://doi.org/10.1007/s40820-020-00510-5
|
6. |
|
7. |
Q. Jiang, L. Xu, N. Chen, H. Zhang, L. Dai et al., Facile synthesis of black phosphorus: an efficient electrocatalyst for the oxygen evolving reaction. Angew. Chem. Int. Ed. 55, 13849-13853 ( 2016). https://doi.org/10.1002/anie.201607393
|
8. |
|
9. |
|
10. |
X. Wang, R.K.M. Raghupathy, C.J. Querebillo, Z. Liao, D. Li et al., Interfacial covalent bonds regulated electron-deficient 2D black phosphorus for electrocatalytic oxygen reactions. Adv. Mater. 33, e2008752 ( 2021). https://doi.org/10.1002/adma.202008752
|
11. |
J. Mei, T. He, J. Bai, D. Qi, A. Du et al., Surface-dependent intermediate adsorption modulation on iridium-modified black phosphorus electrocatalysts for efficient pH-universal water splitting. Adv. Mater. 33, e2104638 ( 2021). https://doi.org/10.1002/adma.202104638
|
12. |
V.V. Kulish, O.I. Malyi, C. Persson, P. Wu, Adsorption of metal adatoms on single-layer phosphorene. Phys. Chem. Chem. Phys. 17, 992-1000 ( 2015). https://doi.org/10.1039/c4cp03890h
|
13. |
J. Lu, X. Zhang, D. Liu, N. Yang, H. Huang et al., Modulation of phosphorene for optimal hydrogen evolution reaction. ACS Appl. Mater. Interfaces 11, 37787-37795 ( 2019). https://doi.org/10.1021/acsami.9b13666
|
14. |
H. Qiao, H. Liu, Z. Huang, Q. Ma, S. Luo et al., Black phosphorus nanosheets modified with Au nanoparticles as high conductivity and high activity electrocatalyst for oxygen evolution reaction. Adv. Energy Mater. 10, 2002424 ( 2020). https://doi.org/10.1002/aenm.202002424
|
15. |
|
16. |
Y. Liu, P. Gao, T. Zhang, X. Zhu, M. Zhang et al., Azide passivation of black phosphorus nanosheets: covalent functionalization affords ambient stability enhancement. Angew. Chem. Int. Ed. 58, 1479-1483 ( 2019). https://doi.org/10.1002/anie.201813218
|
17. |
Z. Sofer, J. Luxa, D. Bouša, D. Sedmidubský, P. Lazar et al., The covalent functionalization of layered black phosphorus by nucleophilic reagents. Angew. Chem. Int. Ed. 56, 9891-9896 ( 2017). https://doi.org/10.1002/anie.201705722
|
18. |
M. Vanni, M. Bellini, S. Borsacchi, L. Calucci, M. Caporali et al., Interlayer coordination of Pd-Pd units in exfoliated black phosphorus. J. Am. Chem. Soc. 143, 10088-10098 ( 2021). https://doi.org/10.1021/jacs.1c01754
|
19. |
|
20. |
Q. Zhou, C. Xu, J. Hou, W. Ma, T. Jian et al., Duplex interpenetrating-phase FeNiZn and FeNi 3 heterostructure with low-gibbs free energy interface coupling for highly efficient overall water splitting. Nano-Micro Lett. 15, 95 ( 2023). https://doi.org/10.1007/s40820-023-01066-w
|
21. |
|
22. |
R.G. Kadam, T. Zhang, D. Zaoralová, M. Medveď, A. Bakandritsos et al., Single co-atoms as electrocatalysts for efficient hydrazine oxidation reaction. Small 17, e2006477 ( 2021). https://doi.org/10.1002/smll.202006477
|
23. |
E. Khare, N. Holten-Andersen, M.J. Buehler, Transition-metal coordinate bonds for bioinspired macromolecules with tunable mechanical properties. Nat. Rev. Mater. 6, 421-436 ( 2021). https://doi.org/10.1038/s41578-020-00270-z
|
24. |
P. Vishnoi, A. Saraswat, C.N.R. Rao, Chemically functionalized phosphorenes and their use in the water splitting reaction. J. Mater. Chem. A 10, 19534-19551 ( 2022). https://doi.org/10.1039/D2TA01932A
|
25. |
W. Fu, J. Wan, H. Zhang, J. Li, W. Chen et al., Photoinduced loading of electron-rich Cu single atoms by moderate coordination for hydrogen evolution. Nat. Commun. 13, 5496 ( 2022). https://doi.org/10.1038/s41467-022-33275-z
|
26. |
L. Zeng, Z. Zhao, F. Lv, Z. Xia, S.-Y. Lu et al., Anti-dissolution Pt single site with Pt(OH)(O 3)/Co(P) coordination for efficient alkaline water splitting electrolyzer. Nat. Commun. 13, 3822 ( 2022). https://doi.org/10.1038/s41467-022-31406-0
|
27. |
|
28. |
H. Liu, J. Cheng, W. He, Y. Li, J. Mao et al., Interfacial electronic modulation of Ni 3S 2 nanosheet arrays decorated with Au nanoparticles boosts overall water splitting. Appl. Catal. B Environ. 304, 120935 ( 2022). https://doi.org/10.1016/j.apcatb.2021.120935
|
29. |
T. Liang, S. Lenus, Y. Liu, Y. Chen, T. Sakthivel et al., Interface and M 3+/M 2+ valence dual-engineering on nickel cobalt sulfoselenide/black phosphorus heterostructure for efficient water splitting electrocatalysis. Energy Environ. Mater. 6, 12332 ( 2023). https://doi.org/10.1002/eem2.12332
|
30. |
|
31. |
J. Li, J. Li, J. Ren, H. Hong, D. Liu et al., Electric-field-treated Ni/Co 3O 4 film as high-performance bifunctional electrocatalysts for efficient overall water splitting. Nano-Micro Lett. 14, 148 ( 2022). https://doi.org/10.1007/s40820-022-00889-3
|
32. |
X. Wang, Q. Li, P. Shi, J. Fan, Y. Min et al., Nickel nitride particles supported on 2D activated graphene-black phosphorus heterostructure: an efficient electrocatalyst for the oxygen evolution reaction. Small 15, e1901530 ( 2019). https://doi.org/10.1002/smll.201901530
|
33. |
W. Yang, B. Ling, B. Hu, H. Yin, J. Mao et al., Synergistic N-heterocyclic carbene/palladium-catalyzed umpolung 1, 4-addition of aryl iodides to enals. Angew. Chem. Int. Ed. 59, 161-166 ( 2020). https://doi.org/10.1002/anie.201912584
|
34. |
S.J. Song, I.S. Raja, Y.B. Lee, M.S. Kang, H.J. Seo et al., Comparison of cytotoxicity of black phosphorus nanosheets in different types of fibroblasts. Biomater. Res. 23, 23 ( 2019). https://doi.org/10.1186/s40824-019-0174-x
|
35. |
Y. Liu, Y. Chen, Y. Tian, T. Sakthivel, H. Liu et al., Synergizing hydrogen spillover and deprotonation by the internal polarization field in a MoS 2/NiPS 3 vertical heterostructure for boosted water electrolysis. Adv. Mater. 34, e2203615 ( 2022). https://doi.org/10.1002/adma.202203615
|
36. |
Y. Wang, X. Li, Z. Huang, H. Wang, Z. Chen et al., Amorphous Mo-doped NiS 0.5 Se 0.5 Nanosheets@Crystalline NiS 0.5 Se 0.5 nanorods for high current-density electrocatalytic water splitting in neutral media. Angew. Chem. Int. Ed. 62, e202215256 ( 2023). https://doi.org/10.1002/anie.202215256
|
37. |
Y. Wang, X. Li, M. Zhang, J. Zhang, Z. Chen et al., Highly active and durable single-atom tungsten-doped NiS 0.5 Se 0.5 nanosheet @NiS 0.5 Se 0.5 nanorod heterostructures for water splitting. Adv. Mater. 34, e2107053 ( 2022). https://doi.org/10.1002/adma.202107053
|
38. |
L. Su, D. Gong, N. Yao, Y. Li, Z. Li et al., Modification of the intermediate binding energies on Ni/Ni 3N heterostructure for enhanced alkaline hydrogen oxidation reaction. Adv. Funct. Mater. 31, 2106156 ( 2021). https://doi.org/10.1002/adfm.202106156
|
39. |
Y. Bai, Y. Wu, X. Zhou, Y. Ye, K. Nie et al., Promoting nickel oxidation state transitions in single-layer NiFeB hydroxide nanosheets for efficient oxygen evolution. Nat. Commun. 13, 6094 ( 2022). https://doi.org/10.1038/s41467-022-33846-0
|
40. |
|
41. |
Y. Lin, H. Wang, C.-K. Peng, L. Bu, C.-L. Chiang et al., Co-induced electronic optimization of hierarchical NiFe LDH for oxygen evolution. Small 16, e2002426 ( 2020). https://doi.org/10.1002/smll.202002426
|
42. |
L. Li, L. Wang, X. Peng, S. Tao, M.-H. Zeng, Nickel-salen as a model for bifunctional OER/UOR electrocatalysts: pyrolysis temperature-electrochemical activity interconnection. Inorg. Chem. Front. 9, 1973-1983 ( 2022). https://doi.org/10.1039/d2qi00226d
|
43. |
|
44. |
W. Zhai, Y. Chen, Y. Liu, T. Sakthivel, Y. Ma et al., Bimetal-incorporated black phosphorene with surface electron deficiency for efficient anti-reconstruction water electrolysis. Adv. Funct. Mater. 33, 2301565 ( 2023). https://doi.org/10.1002/adfm.202301565
|
45. |
W. Ni, T. Wang, F. Héroguel, A. Krammer, S. Lee et al., An efficient nickel hydrogen oxidation catalyst for hydroxide exchange membrane fuel cells. Nat. Mater. 21, 804-810 ( 2022). https://doi.org/10.1038/s41563-022-01221-5
|
46. |
J. Wang, J. Yu, J. Wang, K. Wang, L. Yu et al., Adsorbed p-aminothiophenol molecules on platinum nanoparticles improve electrocatalytic hydrogen evolution. Small 19, e2207135 ( 2023). https://doi.org/10.1002/smll.202207135
|
47. |
J. Wang, S.-J. Kim, J. Liu, Y. Gao, S. Choi et al., Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nat. Catal. 4, 212-222 ( 2021). https://doi.org/10.1038/s41929-021-00578-1
|
48. |
H. Lei, L. Ma, Q. Wan, S. Tan, B. Yang et al., Promoting surface reconstruction of NiFe layered double hydroxide for enhanced oxygen evolution. Adv. Energy Mater. 12, 2202522 ( 2022). https://doi.org/10.1002/aenm.202202522
|
49. |
J. Mei, J. Shang, T. He, D. Qi, L. Kou et al., 2D/2D black phosphorus/nickel hydroxide heterostructures for promoting oxygen evolution via electronic structure modulation and surface reconstruction. Adv. Energy Mater. 12, 2270104 ( 2022). https://doi.org/10.1002/aenm.202270104
|
50. |
T. Wu, S. Xu, Z. Zhang, M. Luo, R. Wang et al., Bimetal modulation stabilizing a metallic heterostructure for efficient overall water splitting at large current density. Adv. Sci. 9, e2202750 ( 2022). https://doi.org/10.1002/advs.202202750
|
51. |
D. S. Hongzhiwei Technology, Version 2021A, China. https://iresearch.net.cn/cloudSoftwareAccessed Oct 2022
URL
|
52. |
Y. Liu, P. Vijayakumar, Q. Liu, T. Sakthivel, F. Chen et al., Shining light on anion-mixed nanocatalysts for efficient water electrolysis: fundamentals, progress, and perspectives. Nano-Micro Lett. 14, 43 ( 2022). https://doi.org/10.1007/s40820-021-00785-2
|
53. |
|
54. |
Z. Yuan, J. Li, M. Yang, Z. Fang, J. Jian et al., Ultrathin black phosphorus-on-nitrogen doped graphene for efficient overall water splitting: dual modulation roles of directional interfacial charge transfer. J. Am. Chem. Soc. 141, 4972-4979 ( 2019). https://doi.org/10.1021/jacs.9b00154
|