309. |
H.-J. Zhan, J.-F. Chen, H.-Y. Zhao, L. Jiao, J.-W. Liu et al., Biomimetic difunctional carbon-nanotube-based aerogels for efficient steam generation. ACS Appl. Nano Mater. 3, 4690-4698 ( 2020). https://doi.org/10.1021/acsanm.0c00683
|
310. |
P. Mu, Z. Zhang, W. Bai, J. He, H. Sun et al., Superwetting monolithic hollow-carbon-nanotubes aerogels with hierarchically nanoporous structure for efficient solar steam generation. Adv. Energy Mater. 9, 1802158 ( 2019). https://doi.org/10.1002/aenm.201802158
|
311. |
B. Zhu, H. Kou, Z. Liu, Z. Wang, D.K. Macharia et al., Flexible and washable CNT-embedded PAN nonwoven fabrics for solar-enabled evaporation and desalination of seawater. ACS Appl. Mater. Interfaces 11, 35005-35014 ( 2019). https://doi.org/10.1021/acsami.9b12806
|
312. |
|
313. |
F. An, X. Li, P. Min, H. Li, Z. Dai et al., Highly anisotropic graphene/boron nitride hybrid aerogels with long-range ordered architecture and moderate density for highly thermally conductive composites. Carbon 126, 119-127 ( 2018). https://doi.org/10.1016/j.carbon.2017.10.011
|
314. |
G. Yang, Y. Yang, T. Chen, J. Wang, L. Ma et al., Graphene/MXene composite aerogels reinforced by polyimide for pressure sensing. ACS Appl. Nano Mater. 5, 1068-1077 ( 2022). https://doi.org/10.1021/acsanm.1c03722
|
315. |
B. Wicklein, A. Kocjan, G. Salazar-Alvarez, F. Carosio, G. Camino et al., Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat. Nanotechnol. 10, 277-283 ( 2015). https://doi.org/10.1038/nnano.2014.248
|
316. |
Y. Zhang, Y. Li, Q. Lei, X. Fang, H. Xie et al., Tightly-packed fluorinated graphene aerogel/polydimethylsiloxane composite with excellent thermal management properties. Compos. Sci. Technol. 220, 109302 ( 2022). https://doi.org/10.1016/j.compscitech.2022.109302
|
317. |
Y.R. Jeong, H. Park, S.W. Jin, S.Y. Hong, S.-S. Lee et al., Highly stretchable and sensitive strain sensors using fragmentized graphene foam. Adv. Funct. Mater. 25, 4228-4236 ( 2015). https://doi.org/10.1002/adfm.201501000
|
318. |
C. Hu, J. Xue, L. Dong, Y. Jiang, X. Wang et al., Scalable preparation of multifunctional fire-retardant ultralight graphene foams. ACS Nano 10, 1325-1332 ( 2016). https://doi.org/10.1021/acsnano.5b06710
|
319. |
T. Xue, W. Fan, X. Zhang, X. Zhao, F. Yang et al., Layered double hydroxide/graphene oxide synergistically enhanced polyimide aerogels for thermal insulation and fire-retardancy. Compos. Part B Eng. 219, 108963 ( 2021). https://doi.org/10.1016/j.compositesb.2021.108963
|
320. |
M. Šilhavík, P. Kumar, Z.A. Zafar, R. Král, P. Zemenová et al., High-temperature fire resistance and self-extinguishing behavior of cellular graphene. ACS Nano 16, 19403-19411 ( 2022). https://doi.org/10.1021/acsnano.2c09076
|
321. |
B.-X. Li, Z. Luo, W.-G. Yang, H. Sun, Y. Ding et al., Adaptive and adjustable MXene/reduced graphene oxide hybrid aerogel composites integrated with phase-change material and thermochromic coating for synchronous visible/infrared camouflages. ACS Nano 17, 6875-6885 ( 2023). https://doi.org/10.1021/acsnano.3c00573
|
322. |
S. Hou, X. Wu, Y. Lv, W. Jia, J. Guo et al., Ultralight, highly elastic and bioinspired capillary-driven graphene aerogels for highly efficient organic pollutants absorption. Appl. Surf. Sci. 509, 144818 ( 2020). https://doi.org/10.1016/j.apsusc.2019.144818
|
323. |
J. Wu, B. Liang, J. Huang, S. Xu, Z. Yan, Honeycomb-like rGO aerogels via oriented freeze-drying as efficient organic solvents removing absorbents. Mater. Lett. 318, 132164 ( 2022). https://doi.org/10.1016/j.matlet.2022.132164
|
324. |
W. Wan, F. Zhang, S. Yu, R. Zhang, Y. Zhou, Hydrothermal formation of graphene aerogel for oil sorption: the role of reducing agent, reaction time and temperature. New J. Chem. 40, 3040-3046 ( 2016). https://doi.org/10.1039/C5NJ03086B
|
325. |
H. Liu, Y. Xu, D. Han, J.-P. Cao, F. Zhao et al., Leaf-structured carbon nanotubes/graphene aerogel and the composites with polydimethylsiloxane for electromagnetic interference shielding. Mater. Lett. 313, 131751 ( 2022). https://doi.org/10.1016/j.matlet.2022.131751
|
1. |
C. Zhu, T.Y.-J. Han, E.B. Duoss, A.M. Golobic, J.D. Kuntz et al., Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 6, 6962 ( 2015). https://doi.org/10.1038/ncomms7962
|
2. |
M.A. Worsley, P.J. Pauzauskie, T.Y. Olson, J. Biener, J.H. Satcher Jr. et al,. Synthesis of graphene aerogel with high electrical conductivity. J. Am. Chem. Soc. 132(40), 14067-14069 ( 2010). https://doi.org/10.1021/ja1072299
|
3. |
Y. Lin, J. Chen, S. Dong, G. Wu, P. Jiang et al., Wet-resilient graphene aerogel for thermal conductivity enhancement in polymer nanocomposites. J. Mater. Sci. Technol. 83, 219-227 ( 2021). https://doi.org/10.1016/j.jmst.2020.12.051
|
4. |
S. Xi, L. Wang, H. Xie, W. Yu, Superhydrophilic modified elastomeric RGO aerogel based hydrated salt phase change materials for effective solar thermal conversion and storage. ACS Nano 16, 3843-3851 ( 2022). https://doi.org/10.1021/acsnano.1c08581
|
5. |
|
6. |
Z. Wang, R. Wei, J. Gu, H. Liu, C. Liu et al., Ultralight, highly compressible and fire-retardant graphene aerogel with self-adjustable electromagnetic wave absorption. Carbon 139, 1126-1135 ( 2018). https://doi.org/10.1016/j.carbon.2018.08.014
|
7. |
H.-Y. Zhao, C. Shu, P. Min, C. Li, W. Deng et al., Constructing anisotropic conical graphene aerogels with concentric annular structures for highly thermally conductive phase change composites towards efficient solar-thermal-electric energy conversion. J. Mater. Chem. A 10, 22488-22499 ( 2022). https://doi.org/10.1039/D2TA06457J
|
8. |
W. Zhan, S. Yu, L. Gao, F. Wang, X. Fu et al., Bioinspired assembly of carbon nanotube into graphene aerogel with “cabbagelike” hierarchical porous structure for highly efficient organic pollutants cleanup. ACS Appl. Mater. Interfaces 10, 1093-1103 ( 2018). https://doi.org/10.1021/acsami.7b15322
|
9. |
W. Qian, H. Fu, Y. Sun, Z. Wang, H. Wu et al., Scalable assembly of high-quality graphene films via electrostatic-repulsion aligning. Adv. Mater. 34, e2206101 ( 2022). https://doi.org/10.1002/adma.202206101
|
10. |
G. Yang, X. Zhang, R. Wang, X. Liu, J. Zhang et al., Ultra-stretchable graphene aerogels at ultralow temperatures. Mater. Horiz. 10, 1865-1874 ( 2023). https://doi.org/10.1039/d3mh00014a
|
11. |
Z. Wang, X. Shen, M.A. Garakani, X. Lin, Y. Wu et al., Graphene aerogel/epoxy composites with exceptional anisotropic structure and properties. ACS Appl. Mater. Interfaces 7, 5538-5549 ( 2015). https://doi.org/10.1021/acsami.5b00146
|
12. |
|
13. |
Y. Zhang, L. Zhang, G. Zhang, H. Li, Naturally dried graphene-based nanocomposite aerogels with exceptional elasticity and high electrical conductivity. ACS Appl. Mater. Interfaces 10, 21565-21572 ( 2018). https://doi.org/10.1021/acsami.8b04689
|
14. |
F. Zhang, L. Guo, Y. Shi, Z. Jin, Y. Cheng et al., Structural engineering of graphite network for ultra-sensitive and durable strain sensors and strain-controlled switches. Chem. Eng. J. 452, 139664 ( 2023). https://doi.org/10.1016/j.cej.2022.139664
|
15. |
X. Guo, S. Cheng, B. Yan, Y. Li, R. Huang et al., Free-standing graphene aerogel with improved through-plane thermal conductivity after being annealed at high temperature. J. Colloid Interface Sci. 608, 2407-2413 ( 2022). https://doi.org/10.1016/j.jcis.2021.10.134
|
16. |
X. Xie, Y. Zhou, H. Bi, K. Yin, S. Wan et al., Large-range control of the microstructures and properties of three-dimensional porous graphene. Sci. Rep. 3, 2117 ( 2013). https://doi.org/10.1038/srep02117
|
17. |
X. Tong, W. Li, J. Li, S. Lu, B. Wang et al., In situ generation of TiO 2 in graphene aerogel and its epoxy composite for electromagnetic interference shielding performance. J. Mater. Sci. Mater. Electron. 33, 5886-5898 ( 2022). https://doi.org/10.1007/s10854-022-07770-4
|
18. |
|
19. |
|
20. |
|
21. |
Z. Cheng, R. Wang, Y. Wang, Y. Cao, Y. Shen et al., Recent advances in graphene aerogels as absorption-dominated electromagnetic interference shielding materials. Carbon 205, 112-137 ( 2023). https://doi.org/10.1016/j.carbon.2023.01.032
|
22. |
|
23. |
J. Mao, J. Iocozzia, J. Huang, K. Meng, Y. Lai et al., Graphene aerogels for efficient energy storage and conversion. Energy Environ. Sci. 11, 772-799 ( 2018). https://doi.org/10.1039/C7EE03031B
|
24. |
J. Yang, X. Shen, W. Yang, J.-K. Kim, Templating strategies for 3D-structured thermally conductive composites: recent advances and thermal energy applications. Prog. Mater. Sci. 133, 101054 ( 2023). https://doi.org/10.1016/j.pmatsci.2022.101054
|
25. |
S. Yu, X. Shen, J.-K. Kim, Beyond homogeneous dispersion: oriented conductive fillers for high κ nanocomposites. Mater. Horiz. 8, 3009-3042 ( 2021). https://doi.org/10.1039/d1mh00907a
|
26. |
|
27. |
M. Yang, N. Zhao, Y. Cui, W. Gao, Q. Zhao et al., Biomimetic architectured graphene aerogel with exceptional strength and resilience. ACS Nano 11, 6817-6824 ( 2017). https://doi.org/10.1021/acsnano.7b01815
|
28. |
B. Yao, J. Chen, L. Huang, Q. Zhou, G. Shi, Base-induced liquid crystals of graphene oxide for preparing elastic graphene foams with long-range ordered microstructures. Adv. Mater. 28, 1623-1629 ( 2016). https://doi.org/10.1002/adma.201504594
|
29. |
H. Guo, T. Hua, J. Qin, Q. Wu, R. Wang et al., A new strategy of 3D printing lightweight lamellar graphene aerogels for electromagnetic interference shielding and piezoresistive sensor applications. Adv. Mater. Technol. 7, 2101699 ( 2022). https://doi.org/10.1002/admt.202101699
|
30. |
P. Zhang, J. Li, L. Lv, Y. Zhao, L. Qu, Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano 11, 5087-5093 ( 2017). https://doi.org/10.1021/acsnano.7b01965
|
31. |
Q. Liang, X. Yao, W. Wang, Y. Liu, C.P. Wong, A three-dimensional vertically aligned functionalized multilayer graphene architecture: an approach for graphene-based thermal interfacial materials. ACS Nano 5, 2392-2401 ( 2011). https://doi.org/10.1021/nn200181e
|
32. |
P. Li, Y. Liu, S. Shi, Z. Xu, W. Ma et al., Highly crystalline graphene fibers with superior strength and conductivities by plasticization spinning. Adv. Funct. Mater. 30, 2006584 ( 2020). https://doi.org/10.1002/adfm.202006584
|
33. |
H.-Y. Mi, X. Jing, A.L. Politowicz, E. Chen, H.-X. Huang et al., Highly compressible ultra-light anisotropic cellulose/graphene aerogel fabricated by bidirectional freeze drying for selective oil absorption. Carbon 132, 199-209 ( 2018). https://doi.org/10.1016/j.carbon.2018.02.033
|
34. |
X. Jiang, Z. Zhao, S. Zhou, H. Zou, P. Liu, Anisotropic and lightweight carbon/graphene composite aerogels for efficient thermal insulation and electromagnetic interference shielding. ACS Appl. Mater. Interfaces 14, 45844-45852 ( 2022). https://doi.org/10.1021/acsami.2c13000
|
35. |
P. Liu, X. Li, X. Chang, P. Min, C. Shu et al., Highly anisotropic graphene aerogels fabricated by calcium ion-assisted unidirectional freezing for highly sensitive sensors and efficient cleanup of crude oil spills. Carbon 178, 301-309 ( 2021). https://doi.org/10.1016/j.carbon.2021.03.014
|
36. |
J. Dong, J. Zeng, B. Wang, Z. Cheng, J. Xu et al., Mechanically flexible carbon aerogel with wavy layers and springboard elastic supporting structure for selective oil/organic solvent recovery. ACS Appl. Mater. Interfaces 13, 15910-15924 ( 2021). https://doi.org/10.1021/acsami.1c02394
|
37. |
Q. Peng, Y. Qin, X. Zhao, X. Sun, Q. Chen et al., Superlight, mechanically flexible, thermally superinsulating, and antifrosting anisotropic nanocomposite foam based on hierarchical graphene oxide assembly. ACS Appl. Mater. Interfaces 9, 44010-44017 ( 2017). https://doi.org/10.1021/acsami.7b14604
|
38. |
W. Chang, X.-Y. Zhang, J. Qu, Z. Chen, Y.-J. Zhang et al., Freestanding Na 3V 2O 2(PO 4) 2F/graphene aerogels as high-performance cathodes of sodium-ion full batteries. ACS Appl. Mater. Interfaces 12, 41419-41428 ( 2020). https://doi.org/10.1021/acsami.0c11074
|
39. |
Y. Lin, F. Liu, G. Casano, R. Bhavsar, I.A. Kinloch et al., Pristine graphene aerogels by room-temperature freeze gelation. Adv. Mater. 28, 7993-8000 ( 2016). https://doi.org/10.1002/adma.201602393
|
40. |
J. Kim, A.P. Tiwari, M. Choi, Q. Chen, J. Lee et al., Boosting bifunctional oxygen electrocatalysis of graphitic C 3N 4 using non-covalently functionalized non-oxidized graphene aerogels as catalyst supports. J. Mater. Chem. A 10, 15689-15697 ( 2022). https://doi.org/10.1039/D2TA02031A
|
41. |
Y. Ham, V. Ri, J. Kim, Y. Yoon, J. Lee et al., Multi-redox phenazine/non-oxidized graphene/cellulose nanohybrids as ultrathick cathodes for high-energy organic batteries. Nano Res. 14, 1382-1389 ( 2021). https://doi.org/10.1007/s12274-020-3187-9
|
42. |
J. Kim, N.M. Han, J. Kim, J. Lee, J.K. Kim et al., Highly conductive and fracture-resistant epoxy composite based on non-oxidized graphene flake aerogel. ACS Appl. Mater. Interfaces 10, 37507-37516 ( 2018). https://doi.org/10.1021/acsami.8b13415
|
43. |
J. Jia, C.-M. Kan, X. Lin, X. Shen, J.-K. Kim, Effects of processing and material parameters on synthesis of monolayer ultralarge graphene oxide sheets. Carbon 77, 244-254 ( 2014). https://doi.org/10.1016/j.carbon.2014.05.027
|
44. |
X. Lin, X. Shen, Q. Zheng, N. Yousefi, L. Ye et al., Fabrication of highly-aligned, conductive, and strong graphene papers using ultralarge graphene oxide sheets. ACS Nano 6, 10708-10719 ( 2012). https://doi.org/10.1021/nn303904z
|
45. |
Q. Zheng, W.H. Ip, X. Lin, N. Yousefi, K.K. Yeung et al., Transparent conductive films consisting of ultralarge graphene sheets produced by Langmuir-Blodgett assembly. ACS Nano 5, 6039-6051 ( 2011). https://doi.org/10.1021/nn2018683
|
46. |
Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk et al., Graphene and graphene oxide: synthesis, properties and applications. Adv. Mater. 22, 3906-3924 ( 2010). https://doi.org/10.1002/adma.201001068
|
47. |
O.C. Compton, S.T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6, 711-723 ( 2010). https://doi.org/10.1002/smll.200901934
|
48. |
D. Konios, M.M. Stylianakis, E. Stratakis, E. Kymakis, Dispersion behaviour of graphene oxide and reduced graphene oxide. J. Colloid Interface Sci. 430, 108-112 ( 2014). https://doi.org/10.1016/j.jcis.2014.05.033
|
49. |
K. Erickson, R. Erni, Z. Lee, N. Alem, W. Gannett et al., Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv. Mater. 22, 4467-4472 ( 2010). https://doi.org/10.1002/adma.201000732
|
50. |
Y. Ma, Y. Gu, Y. He, L. Wei, Y. Lian et al., Fast-charging and dendrite-free lithium metal anode enabled by partial lithiation of graphene aerogel. Nano Res. 15, 9792-9799 ( 2022). https://doi.org/10.1007/s12274-022-4261-2
|
51. |
J. Hu, J. Zhu, S. Ge, C. Jiang, T. Guo et al., Biocompatible, hydrophobic and resilience graphene/chitosan composite aerogel for efficient oil-water separation. Surf. Coat. Technol. 385, 125361 ( 2020). https://doi.org/10.1016/j.surfcoat.2020.125361
|
52. |
L. Dou, X. Zhang, X. Cheng, Z. Ma, X. Wang et al., Hierarchical cellular structured ceramic nanofibrous aerogels with temperature-invariant superelasticity for thermal insulation. ACS Appl. Mater. Interfaces 11, 29056-29064 ( 2019). https://doi.org/10.1021/acsami.9b10018
|
53. |
M. Liu, Z. Yang, H. Sun, C. Lai, X. Zhao et al., A hybrid carbon aerogel with both aligned and interconnected pores as interlayer for high-performance lithium-sulfur batteries. Nano Res. 9, 3735-3746 ( 2016). https://doi.org/10.1007/s12274-016-1244-1
|
54. |
S. Wu, R.B. Ladani, J. Zhang, K. Ghorbani, X. Zhang et al., Strain sensors with adjustable sensitivity by tailoring the microstructure of graphene aerogel/PDMS nanocomposites. ACS Appl. Mater. Interfaces 8, 24853-24861 ( 2016). https://doi.org/10.1021/acsami.6b06012
|
55. |
Z. Xu, Y. Zhang, P. Li, C. Gao, Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores. ACS Nano 6, 7103-7113 ( 2012). https://doi.org/10.1021/nn3021772
|
56. |
M.-A. Shahbazi, M. Ghalkhani, H. Maleki, Directional freeze-casting: a bioinspired method to assemble multifunctional aligned porous structures for advanced applications. Adv. Eng. Mater. 22, 2000033 ( 2020). https://doi.org/10.1002/adem.202000033
|
57. |
G. Shao, D.A.H. Hanaor, X. Shen, A. Gurlo, Freeze casting: from low-dimensional building blocks to aligned porous structures-a review of novel materials, methods, and applications. Adv. Mater. 32, e1907176 ( 2020). https://doi.org/10.1002/adma.201907176
|
58. |
J.-H. Oh, J. Kim, H. Lee, Y. Kang, I.-K. Oh, Directionally antagonistic graphene oxide-polyurethane hybrid aerogel as a sound absorber. ACS Appl. Mater. Interfaces 10, 22650-22660 ( 2018). https://doi.org/10.1021/acsami.8b06361
|
59. |
|
60. |
|
61. |
D. Fan, X. Yang, J. Liu, P. Zhou, X. Zhang, Highly aligned graphene/biomass composite aerogels with anisotropic properties for strain sensing. Compos. Commun. 27, 100887 ( 2021). https://doi.org/10.1016/j.coco.2021.100887
|
62. |
|
63. |
X. Zhu, C. Yang, P. Wu, Z. Ma, Y. Shang et al., Precise control of versatile microstructure and properties of graphene aerogel via freezing manipulation. Nanoscale 12, 4882-4894 ( 2020). https://doi.org/10.1039/c9nr07861d
|
64. |
X.-H. Li, P. Liu, X. Li, F. An, P. Min et al., Vertically aligned, ultralight and highly compressive all-graphitized graphene aerogels for highly thermally conductive polymer composites. Carbon 140, 624-633 ( 2018). https://doi.org/10.1016/j.carbon.2018.09.016
|
65. |
N.M. Han, Z. Wang, X. Shen, Y. Wu, X. Liu et al., Graphene size-dependent multifunctional properties of unidirectional graphene aerogel/epoxy nanocomposites. ACS Appl. Mater. Interfaces 10, 6580-6592 ( 2018). https://doi.org/10.1021/acsami.7b19069
|
66. |
W. Gao, N. Zhao, W. Yao, Z. Xu, H. Bai et al., Effect of flake size on the mechanical properties of graphene aerogels prepared by freeze casting. RSC Adv. 7, 33600-33605 ( 2017). https://doi.org/10.1039/C7RA05557A
|
67. |
|
68. |
|
69. |
L. Estevez, A. Kelarakis, Q. Gong, E.H. Da’as, E.P. Giannelis, Multifunctional graphene/platinum/Nafion hybrids via ice templating. J. Am. Chem. Soc. 133, 6122-6125 ( 2011). https://doi.org/10.1021/ja200244s
|
70. |
J.L. Vickery, A.J. Patil, S. Mann, Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures. Adv. Mater. 21, 2180-2184 ( 2009). https://doi.org/10.1002/adma.200803606
|
71. |
Z. He, M. Qin, C. Han, X. Bai, Y. Wu et al., Pectin/graphene oxide aerogel with bamboo-like structure for enhanced dyes adsorption. Colloids Surf. A Physicochem. Eng. Aspects 652, 129837 ( 2022). https://doi.org/10.1016/j.colsurfa.2022.129837
|
72. |
S. Long, Y. Feng, F. He, S. He, H. Hong et al., An ultralight, supercompressible, superhydrophobic and multifunctional carbon aerogel with a specially designed structure. Carbon 158, 137-145 ( 2020). https://doi.org/10.1016/j.carbon.2019.11.065
|
73. |
V. Rodríguez-Mata, González-Domı́nguez JM, Benito AM, Maser WK, García-Bordejé E, Reduced graphene oxide aerogels with controlled continuous microchannels for environmental remediation. ACS Appl. Nano Mater. 2, 1210-1222 ( 2019). https://doi.org/10.1021/acsanm.8b02101
|
74. |
P. Min, J. Liu, X. Li, F. An, P. Liu et al., Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion. Adv. Funct. Mater. 28, 1805365 ( 2018). https://doi.org/10.1002/adfm.201805365
|
75. |
C. Shen, J.E. Calderon, E. Barrios, M. Soliman, A. Khater et al., Anisotropic electrical conductivity in polymer derived ceramics induced by graphene aerogels. J. Mater. Chem. C 5, 11708-11716 ( 2017). https://doi.org/10.1039/C7TC03846A
|
76. |
|
77. |
M. Farbod, M. Madadi Jaberi, Fabrication of graphene aerogel and graphene/carbon nanotube composite aerogel by freeze casting under ambient pressure and comparison of their properties. Fuller. Nanotub. Carbon Nanostruct. 29, 244-250 ( 2021). https://doi.org/10.1080/1536383x.2020.1832995
|
78. |
Z. He, X. Li, H. Wang, F. Su, D. Wang et al., Synergistic regulation of the microstructure for multifunctional graphene aerogels by a dual template method. ACS Appl. Mater. Interfaces 14, 22544-22553 ( 2022). https://doi.org/10.1021/acsami.2c00525
|
79. |
X.-J. Yu, J. Qu, Z. Yuan, P. Min, S.-M. Hao et al., Anisotropic CoFe 2O 4@Graphene hybrid aerogels with high flux and excellent stability as building blocks for rapid catalytic degradation of organic contaminants in a flow-type setup. ACS Appl. Mater. Interfaces 11, 34222-34231 ( 2019). https://doi.org/10.1021/acsami.9b10287
|
80. |
B. Jiang, K. Liang, Z. Yang, K. Guo, F. Shaik et al., FeCoNiB@Boron-doped vertically aligned graphene arrays: a self-supported electrocatalyst for overall water splitting in a wide pH range. Electrochim. Acta 386, 138459 ( 2021). https://doi.org/10.1016/j.electacta.2021.138459
|
81. |
P. Yang, G. Tontini, J. Wang, I.A. Kinloch, S. Barg, Ice-templated hybrid graphene oxide-graphene nanoplatelet lamellar architectures: tuning mechanical and electrical properties. Nanotechnology 32, 205601 ( 2021). https://doi.org/10.1088/1361-6528/abdf8f
|
82. |
S. Kang, S. Qiao, Y. Cao, Z. Hu, J. Yu et al., Compression strain-dependent tubular carbon nanofibers/graphene aerogel absorber with ultrabroad absorption band. Chem. Eng. J. 433, 133619 ( 2022). https://doi.org/10.1016/j.cej.2021.133619
|
83. |
Z. Zeng, N. Wu, W. Yang, H. Xu, Y. Liao et al., Sustainable-macromolecule-assisted preparation of cross-linked, ultralight, flexible graphene aerogel sensors toward low-frequency strain/pressure to high-frequency vibration sensing. Small 18, e2202047 ( 2022). https://doi.org/10.1002/smll.202202047
|
84. |
|
85. |
Z. Chen, Y. Hu, H. Zhuo, L. Liu, S. Jing et al., Compressible, elastic, and pressure-sensitive carbon aerogels derived from 2D titanium carbide nanosheets and bacterial cellulose for wearable sensors. Chem. Mater. 31, 3301-3312 ( 2019). https://doi.org/10.1021/acs.chemmater.9b00259
|
86. |
P. Feng, X. Wang, J. Yang, Biomimetic, highly reusable and hydrophobic graphene/polyvinyl alcohol/cellulose nanofiber aerogels as oil-removing absorbents. Polymers 14, 1077 ( 2022). https://doi.org/10.3390/polym14061077
|
87. |
P. Min, X. Li, P. Liu, J. Liu, X.-Q. Jia et al., Rational design of soft yet elastic lamellar graphene aerogels via bidirectional freezing for ultrasensitive pressure and bending sensors. Adv. Funct. Mater. 31, 2103703 ( 2021). https://doi.org/10.1002/adfm.202103703
|
88. |
M. Cao, S.-L. Li, J.-B. Cheng, A.-N. Zhang, Y.-Z. Wang et al., Fully bio-based, low fire-hazard and superelastic aerogel without hazardous cross-linkers for excellent thermal insulation and oil clean-up absorption. J. Hazard. Mater. 403, 123977 ( 2021). https://doi.org/10.1016/j.jhazmat.2020.123977
|
89. |
M. Wang, C. Shao, S. Zhou, J. Yang, F. Xu, Super-compressible, fatigue resistant and anisotropic carbon aerogels for piezoresistive sensors. Cellulose 25, 7329-7340 ( 2018). https://doi.org/10.1007/s10570-018-2080-0
|
90. |
|
91. |
Q. Xu, X. Chang, Z. Zhu, L. Xu, X. Chen et al., Flexible pressure sensors with high pressure sensitivity and low detection limit using a unique honeycomb-designed polyimide/reduced graphene oxide composite aerogel. RSC Adv. 11, 11760-11770 ( 2021). https://doi.org/10.1039/D0RA10929K
|
92. |
Y. Wu, Z. Wang, X. Shen, X. Liu, N.M. Han et al., Graphene/boron nitride-polyurethane microlaminates for exceptional dielectric properties and high energy densities. ACS Appl. Mater. Interfaces 10, 26641-26652 ( 2018). https://doi.org/10.1021/acsami.8b08031
|
93. |
|
94. |
J. Yang, Y. Chen, K. Gao, Y. Li, S. Wang et al., Biomimetic superelastic sodium alginate-based sponges with porous sandwich-like architectures. Carbohydr. Polym. 272, 118527 ( 2021). https://doi.org/10.1016/j.carbpol.2021.118527
|
95. |
H. Bai, Y. Chen, B. Delattre, A.P. Tomsia, R.O. Ritchie, Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Sci. Adv. 1, e1500849 ( 2015). https://doi.org/10.1126/sciadv.1500849
|
96. |
K. Zhou, C. Chen, M. Lei, Q. Gao, S. Nie et al., Reduced graphene oxide-based highly sensitive pressure sensor for wearable electronics via an ordered structure and enhanced interlayer interaction mechanism. RSC Adv. 10, 2150-2159 ( 2020). https://doi.org/10.1039/c9ra08653f
|
97. |
|
98. |
W. Xu, Y. Xing, J. Liu, H. Wu, Y. Cui et al., Efficient water transport and solar steam generation via radially, hierarchically structured aerogels. ACS Nano 13, 7930-7938 ( 2019). https://doi.org/10.1021/acsnano.9b02331
|
99. |
C. Wang, X. Chen, B. Wang, M. Huang, B. Wang et al., Freeze-casting produces a graphene oxide aerogel with a radial and centrosymmetric structure. ACS Nano 12, 5816-5825 ( 2018). https://doi.org/10.1021/acsnano.8b01747
|
100. |
|
101. |
L. Fan, J.-L. Li, Z. Cai, X. Wang, Creating biomimetic anisotropic architectures with co-aligned nanofibers and macrochannels by manipulating ice crystallization. ACS Nano 12, 5780-5790 ( 2018). https://doi.org/10.1021/acsnano.8b01648
|
102. |
Y. Lin, Q. Kang, H. Wei, H. Bao, P. Jiang et al., Spider web-inspired graphene skeleton-based high thermal conductivity phase change nanocomposites for battery thermal management. Nano-Micro Lett. 13, 180 ( 2021). https://doi.org/10.1007/s40820-021-00702-7
|
103. |
R. Yu, Y. Shi, D. Yang, Y. Liu, J. Qu et al., Graphene oxide/chitosan aerogel microspheres with honeycomb-cobweb and radially oriented microchannel structures for broad-spectrum and rapid adsorption of water contaminants. ACS Appl. Mater. Interfaces 9, 21809-21819 ( 2017). https://doi.org/10.1021/acsami.7b04655
|
104. |
A. Ouyang, A. Cao, S. Hu, Y. Li, R. Xu et al., Polymer-coated graphene aerogel beads and supercapacitor application. ACS Appl. Mater. Interfaces 8, 11179-11187 ( 2016). https://doi.org/10.1021/acsami.6b01965
|
105. |
Y. Liu, D. Yang, Y. Shi, L. Song, R. Yu et al., Silver phosphate/graphene oxide aerogel microspheres with radially oriented microchannels for highly efficient and continuous removal of pollutants from wastewaters. ACS Sustain. Chem. Eng. 7, 11228-11240 ( 2019). https://doi.org/10.1021/acssuschemeng.9b00561
|
106. |
B. Dan, N. Behabtu, A. Martinez, J.S. Evans, D.V. Kosynkin et al., Liquid crystals of aqueous, giant graphene oxide flakes. Soft Matter 7, 11154-11159 ( 2011). https://doi.org/10.1039/C1SM06418E
|
107. |
R. Narayan, J.E. Kim, J.Y. Kim, K.E. Lee, S.O. Kim, Graphene oxide liquid crystals: discovery, evolution and applications. Adv. Mater. 28, 3045-3068 ( 2016). https://doi.org/10.1002/adma.201505122
|
108. |
R. Jalili, S.H. Aboutalebi, D. Esrafilzadeh, K. Konstantinov, J.M. Razal et al., Formation and processability of liquid crystalline dispersions of graphene oxide. Mater. Horiz. 1, 87-91 ( 2014). https://doi.org/10.1039/C3MH00050H
|
109. |
K.E. Lee, J.E. Kim, U.N. Maiti, J. Lim, J.O. Hwang et al., Liquid crystal size selection of large-size graphene oxide for size-dependent N-doping and oxygen reduction catalysis. ACS Nano 8, 9073-9080 ( 2014). https://doi.org/10.1021/nn5024544
|
110. |
|
111. |
S. Padmajan Sasikala, J. Lim, I.H. Kim, H.J. Jung, T. Yun et al., Graphene oxide liquid crystals: a frontier 2D soft material for graphene-based functional materials. Chem. Soc. Rev. 47, 6013-6045 ( 2018). https://doi.org/10.1039/C8CS00299A
|
112. |
|
113. |
|
114. |
|
115. |
E. Garcia-Bordejé, A.M. Benito, W.K. Maser, Graphene aerogels via hydrothermal gelation of graphene oxide colloids: fine-tuning of its porous and chemical properties and catalytic applications. Adv. Colloid Interface Sci. 292, 102420 ( 2021). https://doi.org/10.1016/j.cis.2021.102420
|
116. |
X. Wu, K. Hou, J. Huang, J. Wang, S. Yang, Graphene-based cellular materials with extremely low density and high pressure sensitivity based on self-assembled graphene oxide liquid crystals. J. Mater. Chem. C 6, 8717-8725 ( 2018). https://doi.org/10.1039/C8TC01853G
|
117. |
|
118. |
J.D. Afroze, M.J. Abden, Z. Yuan, C. Wang, L. Wei et al., Core-shell structured graphene aerogels with multifunctional mechanical, thermal and electromechanical properties. Carbon 162, 365-374 ( 2020). https://doi.org/10.1016/j.carbon.2020.02.057
|
119. |
Q. Meng, H. Wan, W. Zhu, T. Duan, W. Yao, Naturally dried, double nitrogen-doped 3D graphene aerogels modified by plant extracts for multifunctional applications. ACS Sustain. Chem. Eng. 6, 1172-1181 ( 2018). https://doi.org/10.1021/acssuschemeng.7b03460
|
120. |
W. Zhan, X. Fu, F. Wang, W. Zhang, G. Bai et al., Effect of aromatic amine modified graphene aerogel on the curing kinetics and interfacial interaction of epoxy composites. J. Mater. Sci. 55, 10558-10571 ( 2020). https://doi.org/10.1007/s10853-020-04746-9
|
121. |
J.-K. Xiao, J.-Z. Gong, M. Dai, Y.-F. Zhang, S.-G. Wang et al., Reduced graphene oxide/Ag nanoparticle aerogel for efficient solar water evaporation. J. Alloys Compd. 930, 167404 ( 2023). https://doi.org/10.1016/j.jallcom.2022.167404
|
122. |
D. Dai, Y. Zhou, W. Xiao, Z. Hao, H. Zhang et al., Multiple functional base-induced highly ordered graphene aerogels. J. Mater. Chem. C 9, 8849-8854 ( 2021). https://doi.org/10.1039/D1TC01985F
|
123. |
W. Deng, Q. Fang, H. Huang, X. Zhou, J. Ma et al., Oriented arrangement: the origin of versatility for porous graphene materials. Small 13, 1701231 ( 2017). https://doi.org/10.1002/smll.201701231
|
124. |
|
125. |
Z. Xiong, C. Liao, W. Han, X. Wang, Mechanically tough large-area hierarchical porous graphene films for high-performance flexible supercapacitor applications. Adv. Mater. 27, 4469-4475 ( 2015). https://doi.org/10.1002/adma.201501983
|
126. |
Z. Tang, S. Shen, J. Zhuang, X. Wang, Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide. Angew. Chem. Int. Ed. 49, 4603-4607 ( 2010). https://doi.org/10.1002/anie.201000270
|
127. |
|
128. |
|
129. |
|
130. |
Y. Jiang, F. Guo, J. Zhang, Z. Xu, F. Wang et al., Aligning curved stacking bands to simultaneously strengthen and toughen lamellar materials. Mater. Horiz. 10, 556-565 ( 2023). https://doi.org/10.1039/d2mh01023b
|
131. |
|
132. |
D.K. Maurya, S. Deo, D.Y. Khanukaeva, Analysis of Stokes flow of micropolar fluid through a porous cylinder. Math. Methods Appl. Sci. 44, 6647-6665 ( 2021). https://doi.org/10.1002/mma.7214
|
133. |
|
134. |
|
135. |
L. He, J. Ye, M. Shuai, Z. Zhu, X. Zhou et al., Graphene oxide liquid crystals for reflective displays without polarizing optics. Nanoscale 7, 1616-1622 ( 2015). https://doi.org/10.1039/C4NR06008C
|
136. |
L.C. Geonzon, M. Kobayashi, Y. Adachi, Effect of shear flow on the hydrodynamic drag force of a spherical particle near a wall evaluated using optical tweezers and microfluidics. Soft Matter 17, 7914-7920 ( 2021). https://doi.org/10.1039/d1sm00876e
|
137. |
M. Cao, Z. Li, J. Lu, B. Wang, H. Lai et al., Vertical array of graphite oxide liquid crystal by microwire shearing for highly thermally conductive composites. Adv. Mater. 35, e2300077 ( 2023). https://doi.org/10.1002/adma.202300077
|
138. |
J. Ma, S. Lin, Y. Jiang, P. Li, H. Zhang et al., Digital programming graphene oxide liquid crystalline hybrid hydrogel by shearing microlithography. ACS Nano 14, 2336-2344 ( 2020). https://doi.org/10.1021/acsnano.9b09503
|
139. |
H. Geng, X. Liu, G. Shi, G. Bai, J. Ma et al., Graphene oxide restricts growth and recrystallization of ice crystals. Angew. Chem. Int. Ed. 56, 997-1001 ( 2017). https://doi.org/10.1002/anie.201609230
|
140. |
X. Zhang, P. Liu, Y. Duan, M. Jiang, J. Zhang, Graphene/cellulose nanocrystals hybrid aerogel with tunable mechanical strength and hydrophilicity fabricated by ambient pressure drying technique. RSC Adv. 7, 16467-16473 ( 2017). https://doi.org/10.1039/C6RA28178H
|
141. |
F. Gong, W. Wang, H. Li, D.D. Xia, Q. Dai et al., Solid waste and graphite derived solar steam generator for highly-efficient and cost-effective water purification. Appl. Energy 261, 114410 ( 2020). https://doi.org/10.1016/j.apenergy.2019.114410
|
142. |
J. Liu, Z. Khanam, S. Ahmed, T. Wang, H. Wang et al., Flexible antifreeze Zn-ion hybrid supercapacitor based on gel electrolyte with graphene electrodes. ACS Appl. Mater. Interfaces 13, 16454-16468 ( 2021). https://doi.org/10.1021/acsami.1c02242
|
143. |
C. Huang, J. Peng, Y. Cheng, Q. Zhao, Y. Du et al., Ultratough nacre-inspired epoxy-graphene composites with shape memory properties. J. Mater. Chem. A 7, 2787-2794 ( 2019). https://doi.org/10.1039/C8TA10725D
|
144. |
X. Meng, J. Yang, S. Ramakrishna, Y. Sun, Y. Dai, Gradient vertical channels within aerogels based on N-doped graphene meshes toward efficient and salt-resistant solar evaporation. ACS Sustain. Chem. Eng. 8, 4955-4965 ( 2020). https://doi.org/10.1021/acssuschemeng.0c00853
|
145. |
C.-Z. Qi, X. Wu, J. Liu, X.-J. Luo, H.-B. Zhang et al., Highly conductive calcium ion-reinforced MXene/sodium alginate aerogel meshes by direct ink writing for electromagnetic interference shielding and Joule heating. J. Mater. Sci. Technol. 135, 213-220 ( 2023). https://doi.org/10.1016/j.jmst.2022.06.046
|
146. |
Y. Jiang, Z. Xu, T. Huang, Y. Liu, F. Guo et al., Direct 3D printing of ultralight graphene oxide aerogel microlattices. Adv. Funct. Mater. 28, 1707024 ( 2018). https://doi.org/10.1002/adfm.201707024
|
147. |
X. Zhao, W. Gao, W. Yao, Y. Jiang, Z. Xu et al., Ion diffusion-directed assembly approach to ultrafast coating of graphene oxide thick multilayers. ACS Nano 11, 9663-9670 ( 2017). https://doi.org/10.1021/acsnano.7b03480
|
148. |
G. Shao, X. Shen, X. Huang, Multilevel structural design and heterointerface engineering of a host-guest binary aerogel toward multifunctional broadband microwave absorption. ACS Mater. Lett. 4, 1787-1797 ( 2022). https://doi.org/10.1021/acsmaterialslett.2c00634
|
149. |
|
150. |
X. Huang, G. Yu, Y. Zhang, M. Zhang, G. Shao, Design of cellular structure of graphene aerogels for electromagnetic wave absorption. Chem. Eng. J. 426, 131894 ( 2021). https://doi.org/10.1016/j.cej.2021.131894
|
151. |
H. Yang, T. Zhang, M. Jiang, Y. Duan, J. Zhang, Ambient pressure dried graphene aerogels with superelasticity and multifunctionality. J. Mater. Chem. A 3, 19268-19272 ( 2015). https://doi.org/10.1039/C5TA06452J
|
152. |
|
153. |
K.C. Lai, L.Y. Lee, B.Y.Z. Hiew, S. Thangalazhy-Gopakumar, S. Gan, Environmental application of three-dimensional graphene materials as adsorbents for dyes and heavy metals: review on ice-templating method and adsorption mechanisms. J. Environ. Sci. (China) 79, 174-199 ( 2019). https://doi.org/10.1016/j.jes.2018.11.023
|
154. |
W. Gao, N. Zhao, T. Yu, J. Xi, A. Mao et al., High-efficiency electromagnetic interference shielding realized in nacre-mimetic graphene/polymer composite with extremely low graphene loading. Carbon 157, 570-577 ( 2020). https://doi.org/10.1016/j.carbon.2019.10.051
|
155. |
Y. Wang, B. Yao, H. Chen, H. Wang, C. Li et al., Preparation of anisotropic conductive graphene aerogel/polydimethylsiloxane composites as LEGO® modulars. Eur. Polym. J. 112, 487-492 ( 2019). https://doi.org/10.1016/j.eurpolymj.2019.01.036
|
156. |
H.-L. Gao, Y.-B. Zhu, L.-B. Mao, F.-C. Wang, X.-S. Luo et al., Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure. Nat. Commun. 7, 12920 ( 2016). https://doi.org/10.1038/ncomms12920
|
157. |
Z. Wang, N.M. Han, Y. Wu, X. Liu, X. Shen et al., Ultrahigh dielectric constant and low loss of highly-aligned graphene aerogel/poly(vinyl alcohol) composites with insulating barriers. Carbon 123, 385-394 ( 2017). https://doi.org/10.1016/j.carbon.2017.07.079
|
158. |
F. Guo, X. Shen, J. Zhou, D. Liu, Q. Zheng et al., Highly thermally conductive dielectric nanocomposites with synergistic alignments of graphene and boron nitride nanosheets. Adv. Funct. Mater. 30, 1910826 ( 2020). https://doi.org/10.1002/adfm.201910826
|
159. |
G. Li, X. Zhang, J. Wang, J. Fang, From anisotropic graphene aerogels to electron- and photo-driven phase change composites. J. Mater. Chem. A 4, 17042-17049 ( 2016). https://doi.org/10.1039/C6TA07587H
|
160. |
G. Li, Z. Chu, X. Gong, M. Xiao, Q. Dong et al., A wide-range linear and stable piezoresistive sensor based on methylcellulose-reinforced, lamellar, and wrinkled graphene aerogels. Adv. Mater. Technol. 7, 2101021 ( 2022). https://doi.org/10.1002/admt.202101021
|
161. |
N. Ni, S. Barg, E. Garcia-Tunon, F.M. Perez, M. Miranda et al., Understanding mechanical response of elastomeric graphene networks. Sci. Rep. 5, 13712 ( 2015). https://doi.org/10.1038/srep13712
|
162. |
T. Liu, M. Huang, X. Li, C. Wang, C.-X. Gui et al., Highly compressible anisotropic graphene aerogels fabricated by directional freezing for efficient absorption of organic liquids. Carbon 100, 456-464 ( 2016). https://doi.org/10.1016/j.carbon.2016.01.038
|
163. |
Y. Qin, Q. Peng, Y. Zhu, X. Zhao, Z. Lin et al., Lightweight, mechanically flexible and thermally superinsulating rGO/polyimide nanocomposite foam with an anisotropic microstructure. Nanoscale Adv. 1, 4895-4903 ( 2019). https://doi.org/10.1039/c9na00444k
|
164. |
X. Zhao, W. Wu, D. Drummer, Y. Wang, S. Cui et al., SiC nanowires bridged graphene aerogels with a vertically aligned structure for highly thermal conductive epoxy resin composites and their mechanism. ACS Appl. Electron. Mater. 5, 2548-2557 ( 2023). https://doi.org/10.1021/acsaelm.3c00015
|
165. |
F. An, X. Li, P. Min, P. Liu, Z.-G. Jiang et al., Vertically aligned high-quality graphene foams for anisotropically conductive polymer composites with ultrahigh through-plane thermal conductivities. ACS Appl. Mater. Interfaces 10, 17383-17392 ( 2018). https://doi.org/10.1021/acsami.8b04230
|
166. |
P. Liu, X. Li, P. Min, X. Chang, C. Shu et al., 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 13, 22 ( 2020). https://doi.org/10.1007/s40820-020-00548-5
|
167. |
|
168. |
X. Tang, H. Zhou, Z. Cai, D. Cheng, P. He et al., Generalized 3D printing of graphene-based mixed-dimensional hybrid aerogels. ACS Nano 12, 3502-3511 ( 2018). https://doi.org/10.1021/acsnano.8b00304
|
169. |
W.-L. Song, M.-S. Cao, M.-M. Lu, S. Bi, C.-Y. Wang et al., Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 66, 67-76 ( 2014). https://doi.org/10.1016/j.carbon.2013.08.043
|
170. |
Y. Wu, Z. Wang, X. Liu, X. Shen, Q. Zheng et al., Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfaces 9, 9059-9069 ( 2017). https://doi.org/10.1021/acsami.7b01017
|
171. |
X.-H. Li, X. Li, K.-N. Liao, P. Min, T. Liu et al., Thermally annealed anisotropic graphene aerogels and their electrically conductive epoxy composites with excellent electromagnetic interference shielding efficiencies. ACS Appl. Mater. Interfaces 8, 33230-33239 ( 2016). https://doi.org/10.1021/acsami.6b12295
|
172. |
Z. Yu, T. Dai, S. Yuan, H. Zou, P. Liu, Electromagnetic interference shielding performance of anisotropic polyimide/graphene composite aerogels. ACS Appl. Mater. Interfaces 12, 30990-31001 ( 2020). https://doi.org/10.1021/acsami.0c07122
|
173. |
A. Motaghi, A. Hrymak, G.H. Motlagh, Electrical conductivity and percolation threshold of hybrid carbon/polymer composites. J. Appl. Polym. Sci. 132, 41744 ( 2015). https://doi.org/10.1002/app.41744
|
174. |
R. Taherian, Development of an equation to model electrical conductivity of polymer-based carbon nanocomposites. ECS J. Solid State Sci. Technol. 3, M26-M38 ( 2014). https://doi.org/10.1149/2.023406jss
|
175. |
|
176. |
P. Liu, Z. Jin, G. Katsukis, L.W. Drahushuk, S. Shimizu et al., Layered and scrolled nanocomposites with aligned semi-infinite graphene inclusions at the platelet limit. Science 353, 364-367 ( 2016). https://doi.org/10.1126/science.aaf4362
|
177. |
J. Jia, X. Sun, X. Lin, X. Shen, Y.-W. Mai et al., Exceptional electrical conductivity and fracture resistance of 3D interconnected graphene foam/epoxy composites. ACS Nano 8, 5774-5783 ( 2014). https://doi.org/10.1021/nn500590g
|
178. |
L. Qiu, D. Liu, Y. Wang, C. Cheng, K. Zhou et al., Mechanically robust, electrically conductive and stimuli-responsive binary network hydrogels enabled by superelastic graphene aerogels. Adv. Mater. 26, 3333-3337 ( 2014). https://doi.org/10.1002/adma.201305359
|
179. |
|
180. |
N. Yousefi, X. Lin, Q. Zheng, X. Shen, J.R. Pothnis et al., Simultaneous in situ reduction, self-alignment and covalent bonding in graphene oxide/epoxy composites. Carbon 59, 406-417 ( 2013). https://doi.org/10.1016/j.carbon.2013.03.034
|
181. |
N. Yousefi, M.M. Gudarzi, Q. Zheng, S.H. Aboutalebi, F. Sharif et al., Self-alignment and high electrical conductivity of ultralarge graphene oxide-polyurethane nanocomposites. J. Mater. Chem. 22, 12709-12717 ( 2012). https://doi.org/10.1039/C2JM30590A
|
182. |
A.S. Wajid, H.S. Tanvir Ahmed, S. Das, F. Irin, A.F. Jankowski et al., High-performance pristine graphene/epoxy composites with enhanced mechanical and electrical properties. Macromol. Mater. Eng. 298, 339-347 ( 2013). https://doi.org/10.1002/mame.201200043
|
183. |
|
184. |
C. Gao, S. Zhang, F. Wang, B. Wen, C. Han et al., Graphene networks with low percolation threshold in ABS nanocomposites: selective localization and electrical and rheological properties. ACS Appl. Mater. Interfaces 6, 12252-12260 ( 2014). https://doi.org/10.1021/am501843s
|
185. |
D. Wang, X. Zhang, J.-W. Zha, J. Zhao, Z.-M. Dang et al., Dielectric properties of reduced graphene oxide/polypropylene composites with ultralow percolation threshold. Polymer 54, 1916-1922 ( 2013). https://doi.org/10.1016/j.polymer.2013.02.012
|
186. |
|
187. |
L. Yang, Z. Wang, Y. Ji, J. Wang, G. Xue, Highly ordered 3D graphene-based polymer composite materials fabricated by “particle-constructing” method and their outstanding conductivity. Macromolecules 47, 1749-1756 ( 2014). https://doi.org/10.1021/ma402364r
|
188. |
P. Wang, H. Chong, J. Zhang, H. Lu, Constructing 3D graphene networks in polymer composites for significantly improved electrical and mechanical properties. ACS Appl. Mater. Interfaces 9, 22006-22017 ( 2017). https://doi.org/10.1021/acsami.7b07328
|
189. |
D.-X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu et al., Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25, 559-566 ( 2015). https://doi.org/10.1002/adfm.201403809
|
190. |
|
191. |
|
192. |
Z. Fan, F. Gong, S.T. Nguyen, H.M. Duong, Advanced multifunctional graphene aerogel-Poly (methyl methacrylate) composites: experiments and modeling. Carbon 81, 396-404 ( 2015). https://doi.org/10.1016/j.carbon.2014.09.072
|
193. |
R. Ram, M. Rahaman, A. Aldalbahi, D. Khastgir, Determination of percolation threshold and electrical conductivity of polyvinylidene fluoride (PVDF)/short carbon fiber (SCF) composites: effect of SCF aspect ratio. Polym. Int. 66, 573-582 ( 2017). https://doi.org/10.1002/pi.5294
|
194. |
X. Liu, X. Sun, Z. Wang, X. Shen, Y. Wu et al., Planar porous graphene woven fabric/epoxy composites with exceptional electrical, mechanical properties, and fracture toughness. ACS Appl. Mater. Interfaces 7, 21455-21464 ( 2015). https://doi.org/10.1021/acsami.5b06476
|
195. |
X. Shen, Z. Wang, Y. Wu, X. Liu, Y.-B. He et al., A three-dimensional multilayer graphene web for polymer nanocomposites with exceptional transport properties and fracture resistance. Mater. Horiz. 5, 275-284 ( 2018). https://doi.org/10.1039/C7MH00984D
|
196. |
X.-Y. Qi, D. Yan, Z. Jiang, Y.-K. Cao, Z.-Z. Yu et al., Enhanced electrical conductivity in polystyrene nanocomposites at ultra-low graphene content. ACS Appl. Mater. Interfaces 3, 3130-3133 ( 2011). https://doi.org/10.1021/am200628c
|
197. |
X. Wang, H. Bai, Z. Yao, A. Liu, G. Shi, Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films. J. Mater. Chem. 20, 9032-9036 ( 2010). https://doi.org/10.1039/C0JM01852J
|
198. |
F.-Y. Yuan, H.-B. Zhang, X. Li, H.-L. Ma, X.-Z. Li et al., In situ chemical reduction and functionalization of graphene oxide for electrically conductive phenol formaldehyde composites. Carbon 68, 653-661 ( 2014). https://doi.org/10.1016/j.carbon.2013.11.046
|
199. |
L. Yang, W. Weng, X. Fei, L. Pan, X. Li et al., Revealing the interrelation between hydrogen bonds and interfaces in graphene/PVA composites towards highly electrical conductivity. Chem. Eng. J. 383, 123126 ( 2020). https://doi.org/10.1016/j.cej.2019.123126
|
200. |
V.H. Pham, T.T. Dang, S.H. Hur, E.J. Kim, J.S. Chung, Highly conductive poly(methyl methacrylate) (PMMA)-reduced graphene oxide composite prepared by self-assembly of PMMA latex and graphene oxide through electrostatic interaction. ACS Appl. Mater. Interfaces 4, 2630-2636 ( 2012). https://doi.org/10.1021/am300297j
|
201. |
|
202. |
C. Huang, J. Peng, S. Wan, Y. Du, S. Dou et al., Ultra-tough inverse artificial nacre based on epoxy-graphene by freeze-casting. Angew. Chem. Int. Ed. Engl. 58, 7636-7640 ( 2019). https://doi.org/10.1002/anie.201902410
|
203. |
L.-C. Tang, Y.-J. Wan, D. Yan, Y.-B. Pei, L. Zhao et al., The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60, 16-27 ( 2013). https://doi.org/10.1016/j.carbon.2013.03.050
|
204. |
M. Fang, Z. Zhang, J. Li, H. Zhang, H. Lu et al., Constructing hierarchically structured interphases for strong and tough epoxy nanocomposites by amine-rich graphene surfaces. J. Mater. Chem. 20, 9635-9643 ( 2010). https://doi.org/10.1039/C0JM01620A
|
326. |
|
327. |
Z. Zeng, C. Wang, Y. Zhang, P. Wang, S.I. Seyed Shahabadi et al., Ultralight and highly elastic graphene/lignin-derived carbon nanocomposite aerogels with ultrahigh electromagnetic interference shielding performance. ACS Appl. Mater. Interfaces 10, 8205-8213 ( 2018). https://doi.org/10.1021/acsami.7b19427
|
328. |
Z. Zeng, Y. Zhang, X.Y.D. Ma, S.I.S. Shahabadi, B. Che et al., Biomass-based honeycomb-like architectures for preparation of robust carbon foams with high electromagnetic interference shielding performance. Carbon 140, 227-236 ( 2018). https://doi.org/10.1016/j.carbon.2018.08.061
|
329. |
Q. Zhang, Z. Du, M. Hou, Z. Ding, X. Huang et al., Ultralight, anisotropic, and self-supported graphene/MWCNT aerogel with high-performance microwave absorption. Carbon 188, 442-452 ( 2022). https://doi.org/10.1016/j.carbon.2021.11.047
|
330. |
S. Zhao, H.-B. Zhang, J.-Q. Luo, Q.-W. Wang, B. Xu et al., Highly electrically conductive three-dimensional Ti 3C 2T x MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12, 11193-11202 ( 2018). https://doi.org/10.1021/acsnano.8b05739
|
331. |
L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang et al., Multifunctional magnetic Ti 3C 2T x MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15, 6622-6632 ( 2021). https://doi.org/10.1021/acsnano.0c09982
|
205. |
|
206. |
|
207. |
P. Liu, F. An, X. Lu, X. Li, P. Min et al., Highly thermally conductive phase change composites with excellent solar-thermal conversion efficiency and satisfactory shape stability on the basis of high-quality graphene-based aerogels. Compos. Sci. Technol. 201, 108492 ( 2021). https://doi.org/10.1016/j.compscitech.2020.108492
|
208. |
G. Lian, C.-C. Tuan, L. Li, S. Jiao, Q. Wang et al., Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading. Chem. Mater. 28, 6096-6104 ( 2016). https://doi.org/10.1021/acs.chemmater.6b01595
|
209. |
J. Yang, E. Zhang, X. Li, Y. Zhang, J. Qu et al., Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage. Carbon 98, 50-57 ( 2016). https://doi.org/10.1016/j.carbon.2015.10.082
|
210. |
J. Yang, G.-Q. Qi, Y. Liu, R.-Y. Bao, Z.-Y. Liu et al., Hybrid graphene aerogels/phase change material composites: thermal conductivity, shape-stabilization and light-to-thermal energy storage. Carbon 100, 693-702 ( 2016). https://doi.org/10.1016/j.carbon.2016.01.063
|
211. |
K.M.F. Shahil, A.A. Balandin, Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett. 12, 861-867 ( 2012). https://doi.org/10.1021/nl203906r
|
212. |
X. Shen, Z. Wang, Y. Wu, X. Liu, Y.-B. He et al., Multilayer graphene enables higher efficiency in improving thermal conductivities of graphene/epoxy composites. Nano Lett. 16, 3585-3593 ( 2016). https://doi.org/10.1021/acs.nanolett.6b00722
|
213. |
M. Shtein, R. Nadiv, M. Buzaglo, K. Kahil, O. Regev, Thermally conductive graphene-polymer composites: size, percolation, and synergy effects. Chem. Mater. 27, 2100-2106 ( 2015). https://doi.org/10.1021/cm504550e
|
214. |
|
215. |
A. Gao, F. Zhao, F. Wang, G. Zhang, S. Zhao et al., Highly conductive and light-weight acrylonitrile-butadiene-styrene copolymer/reduced graphene nanocomposites with segregated conductive structure. Compos. Part A Appl. Sci. Manuf. 122, 1-7 ( 2019). https://doi.org/10.1016/j.compositesa.2019.04.019
|
216. |
K.H. Kim, J.U. Jang, G.Y. Yoo, S.H. Kim, M.J. Oh et al., Enhanced electrical and thermal conductivities of polymer composites with a segregated network of graphene nanoplatelets. Materials 16, 5329 ( 2023). https://doi.org/10.3390/ma16155329
|
217. |
|
218. |
H. Ji, D.P. Sellan, M.T. Pettes, X. Kong, J. Ji et al., Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy Environ. Sci. 7, 1185-1192 ( 2014). https://doi.org/10.1039/C3EE42573H
|
219. |
Q. Yan, J. Gao, D. Chen, P. Tao, L. Chen et al., A highly orientational architecture formed by covalently bonded graphene to achieve high through-plane thermal conductivity of polymer composites. Nanoscale 14, 11171-11178 ( 2022). https://doi.org/10.1039/d2nr02265f
|
220. |
J. Gong, Z. Liu, J. Yu, D. Dai, W. Dai et al., Graphene woven fabric-reinforced polyimide films with enhanced and anisotropic thermal conductivity. Compos. Part A Appl. Sci. Manuf. 87, 290-296 ( 2016). https://doi.org/10.1016/j.compositesa.2016.05.010
|
221. |
C. Shu, H.-Y. Zhao, S. Zhao, W. Deng, P. Min et al., Highly thermally conductive phase change composites with anisotropic graphene/cellulose nanofiber hybrid aerogels for efficient temperature regulation and solar-thermal-electric energy conversion applications. Compos. Part B Eng. 248, 110367 ( 2023). https://doi.org/10.1016/j.compositesb.2022.110367
|
222. |
N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia et al., Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26, 5480-5487 ( 2014). https://doi.org/10.1002/adma.201305293
|
223. |
C.A. Bashur, L.A. Dahlgren, A.S. Goldstein, Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(D, L-lactic-co-glycolic acid) meshes. Biomaterials 27, 5681-5688 ( 2006). https://doi.org/10.1016/j.biomaterials.2006.07.005
|
224. |
I.C. Parrag, P.W. Zandstra, K.A. Woodhouse, Fiber alignment and coculture with fibroblasts improves the differentiated phenotype of murine embryonic stem cell-derived cardiomyocytes for cardiac tissue engineering. Biotechnol. Bioeng. 109, 813-822 ( 2012). https://doi.org/10.1002/bit.23353
|
225. |
S.H. McGee, R.L. McCullough, Characterization of fiber orientation in short-fiber composites. J. Appl. Phys. 55, 1394-1403 ( 1984). https://doi.org/10.1063/1.333230
|
226. |
M. Guc, S. Levcenko, I.V. Bodnar, V. Izquierdo-Roca, X. Fontane et al., Polarized Raman scattering study of kesterite type Cu 2ZnSnS 4 single crystals. Sci. Rep. 6, 19414 ( 2016). https://doi.org/10.1038/srep19414
|
227. |
Z. Zhang, C.-S. Lee, W. Zhang, Vertically aligned graphene nanosheet arrays: synthesis, properties and applications in electrochemical energy conversion and storage. Adv. Energy Mater. 7, 1700678 ( 2017). https://doi.org/10.1002/aenm.201700678
|
228. |
Y. Wu, X. Lin, X. Shen, X. Sun, X. Liu et al., Exceptional dielectric properties of chlorine-doped graphene oxide/poly (vinylidene fluoride) nanocomposites. Carbon 89, 102-112 ( 2015). https://doi.org/10.1016/j.carbon.2015.02.074
|
229. |
K. Chu, F. Wang, X.-H. Wang, D.-J. Huang, Anisotropic mechanical properties of graphene/copper composites with aligned graphene. Mater. Sci. Eng. A 713, 269-277 ( 2018). https://doi.org/10.1016/j.msea.2017.12.080
|
230. |
Z. Li, R.J. Young, N.R. Wilson, I.A. Kinloch, C. Vallés et al., Effect of the orientation of graphene-based nanoplatelets upon the Young’s modulus of nanocomposites. Compos. Sci. Technol. 123, 125-133 ( 2016). https://doi.org/10.1016/j.compscitech.2015.12.005
|
231. |
Z. Li, R.J. Young, I.A. Kinloch, N.R. Wilson, A.J. Marsden et al., Quantitative determination of the spatial orientation of graphene by polarized Raman spectroscopy. Carbon 88, 215-224 ( 2015). https://doi.org/10.1016/j.carbon.2015.02.072
|
232. |
H. Yang, H. Hu, Z. Ni, C.K. Poh, C. Cong et al., Comparison of surface-enhanced Raman scattering on graphene oxide, reduced graphene oxide and graphene surfaces. Carbon 62, 422-429 ( 2013). https://doi.org/10.1016/j.carbon.2013.06.027
|
233. |
T. Chatterjee, C.A. Mitchell, V.G. Hadjiev, R. Krishnamoorti, Oriented single-walled carbon nanotubes-poly(ethylene oxide) nanocomposites. Macromolecules 45, 9357-9363 ( 2012). https://doi.org/10.1021/ma301476r
|
234. |
R. Pérez, S. Banda, Z. Ounaies, Determination of the orientation distribution function in aligned single wall nanotube polymer nanocomposites by polarized Raman spectroscopy. J. Appl. Phys. 103, 074302 ( 2008). https://doi.org/10.1063/1.2885347
|
235. |
|
236. |
C.-S. Tsao, E.-W. Huang, M.-H. Wen, T.-Y. Kuo, S.-L. Jeng et al., Phase transformation and precipitation of an Al-Cu alloy during non-isothermal heating studied by in situ small-angle and wide-angle scattering. J. Alloys Compd. 579, 138-146 ( 2013). https://doi.org/10.1016/j.jallcom.2013.04.201
|
237. |
S.A. Pabit, A.M. Katz, I.S. Tolokh, A. Drozdetski, N. Baker et al., Understanding nucleic acid structural changes by comparing wide-angle X-ray scattering (WAXS) experiments to molecular dynamics simulations. J. Chem. Phys. 144, 205102 ( 2016). https://doi.org/10.1063/1.4950814
|
238. |
J. Jing, Y. Chen, S. Shi, L. Yang, P. Lambin, Facile and scalable fabrication of highly thermal conductive polyethylene/graphene nanocomposites by combining solid-state shear milling and FDM 3D-printing aligning methods. Chem. Eng. J. 402, 126218 ( 2020). https://doi.org/10.1016/j.cej.2020.126218
|
239. |
S. Ansari, A. Kelarakis, L. Estevez, E.P. Giannelis, Oriented arrays of graphene in a polymer matrix by in situ reduction of graphite oxide nanosheets. Small 6, 205-209 ( 2010). https://doi.org/10.1002/smll.200900765
|
240. |
|
241. |
Z. Xu, Y. Liu, X. Zhao, L. Peng, H. Sun et al., Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering. Adv. Mater. 28, 6449-6456 ( 2016). https://doi.org/10.1002/adma.201506426
|
242. |
Y. Cheng, G. Cui, C. Liu, Z. Liu, L. Yan et al., Electric Current aligning component units during graphene fiber joule heating. Adv. Funct. Mater. 32, 2103493 ( 2022). https://doi.org/10.1002/adfm.202103493
|
243. |
J.J. Hermans, P.H. Hermans, D. Vermaas, A. Weidinger Quantitative evaluation of orientation in cellulose fibres from the X-ray fibre diagram. Recl. Trav. Chim. Pays-Bas 65, 427-447 ( 1946). https://doi.org/10.1002/recl.19460650605
|
244. |
|
245. |
X. Lu, X. Feng, J.R. Werber, C. Chu, I. Zucker et al., Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets. Proc. Natl. Acad. Sci. U.S.A. 114, E9793-E9801 ( 2017). https://doi.org/10.1073/pnas.1710996114
|
246. |
L. Wu, M. Ohtani, M. Takata, A. Saeki, S. Seki et al., Magnetically induced anisotropic orientation of graphene oxide locked by in situ hydrogelation. ACS Nano 8, 4640-4649 ( 2014). https://doi.org/10.1021/nn5003908
|
247. |
X. Wang, W. Yu, L. Wang, H. Xie, Vertical orientation graphene/MXene hybrid phase change materials with anisotropic properties, high enthalpy, and photothermal conversion. Sci. China Technol. Sci. 65, 882-892 ( 2022). https://doi.org/10.1007/s11431-021-1997-4
|
248. |
C. Shu, H.-Y. Zhao, X.-H. Lu, P. Min, Y. Zhang et al., High-quality anisotropic graphene aerogels and their thermally conductive phase change composites for efficient solar-thermal-electrical energy conversion. ACS Sustain. Chem. Eng. 11, 11991-12003 ( 2023). https://doi.org/10.1021/acssuschemeng.3c02154
|
249. |
H. Ren, M. Tang, B. Guan, K. Wang, J. Yang et al., Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv. Mater. 29, 1702590 ( 2017). https://doi.org/10.1002/adma.201702590
|
250. |
K.-T. Lin, H. Lin, T. Yang, B. Jia, Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion. Nat. Commun. 11, 1389 ( 2020). https://doi.org/10.1038/s41467-020-15116-z
|
251. |
K. Sun, H. Dong, Y. Kou, H. Yang, H. Liu et al., Flexible graphene aerogel-based phase change film for solar-thermal energy conversion and storage in personal thermal management applications. Chem. Eng. J. 419, 129637 ( 2021). https://doi.org/10.1016/j.cej.2021.129637
|
252. |
Z. Luo, D. Yang, J. Liu, H.-Y. Zhao, T. Zhao et al., Nature-inspired solar-thermal gradient reduced graphene oxide aerogel-based bilayer phase change composites for self-adaptive personal thermal management. Adv. Funct. Mater. 33, 2212032 ( 2023). https://doi.org/10.1002/adfm.202212032
|
253. |
G. Qi, J. Yang, R. Bao, D. Xia, M. Cao et al., Hierarchical graphene foam-based phase change materials with enhanced thermal conductivity and shape stability for efficient solar-to-thermal energy conversion and storage. Nano Res. 10, 802-813 ( 2017). https://doi.org/10.1007/s12274-016-1333-1
|
254. |
J. Feng, X. Liu, F. Lin, S. Duan, K. Zeng et al., Aligned channel Gelatin@nanoGraphite aerogel supported form-stable phase change materials for solar-thermal energy conversion and storage. Carbon 201, 756-764 ( 2023). https://doi.org/10.1016/j.carbon.2022.09.064
|
255. |
X. Wu, L. Tang, S. Zheng, Y. Huang, J. Yang et al., Hierarchical unidirectional graphene aerogel/polyaniline composite for high performance supercapacitors. J. Power. Sources 397, 189-195 ( 2018). https://doi.org/10.1016/j.jpowsour.2018.07.031
|
256. |
|
257. |
|
258. |
|
259. |
G.-L. Zhu, C.-Z. Zhao, J.-Q. Huang, C. He, J. Zhang et al., Fast charging lithium batteries: recent progress and future prospects. Small 15, e1805389 ( 2019). https://doi.org/10.1002/smll.201805389
|
260. |
K.-H. Chen, M.J. Namkoong, V. Goel, C. Yang, S. Kazemiabnavi et al., Efficient fast-charging of lithium-ion batteries enabled by laser-patterned three-dimensional graphite anode architectures. J. Power. Sources 471, 228475 ( 2020). https://doi.org/10.1016/j.jpowsour.2020.228475
|
261. |
G. Tan, L. Chong, R. Amine, J. Lu, C. Liu et al., Toward highly efficient electrocatalyst for Li-O 2 batteries using biphasic N-doping Cobalt@Graphene multiple-capsule heterostructures. Nano Lett. 17, 2959-2966 ( 2017). https://doi.org/10.1021/acs.nanolett.7b00207
|
262. |
J. Zhou, M. Xie, F. Wu, G. Wei, Y. Mei et al., Toward uniform Li plating/stripping by optimizing Li-ion transport and nucleation of engineered graphene aerogel. Chem. Eng. J. 427, 130967 ( 2022). https://doi.org/10.1016/j.cej.2021.130967
|
263. |
L. Dong, L. Zhang, S. Lin, Z. Chen, Y. Wang et al., Building vertically-structured, high-performance electrodes by interlayer-confined reactions in accordion-like, chemically expanded graphite. Nano Energy 70, 104482 ( 2020). https://doi.org/10.1016/j.nanoen.2020.104482
|
264. |
|
265. |
S. Long, Y. Feng, F. He, J. Zhao, T. Bai et al., Biomass-derived, multifunctional and wave-layered carbon aerogels toward wearable pressure sensors, supercapacitors and triboelectric nanogenerators. Nano Energy 85, 105973 ( 2021). https://doi.org/10.1016/j.nanoen.2021.105973
|
266. |
J.D. Afroze, L. Tong, M.J. Abden, Y. Chen, Multifunctional hierarchical graphene-carbon fiber hybrid aerogels for strain sensing and energy storage. Adv. Compos. Hybrid Mater. 6, 18 ( 2022). https://doi.org/10.1007/s42114-022-00594-0
|
267. |
P.-X. Li, G.-Z. Guan, X. Shi, L. Lu, Y.-C. Fan et al., Bidirectionally aligned MXene hybrid aerogels assembled with MXene nanosheets and microgels for supercapacitors. Rare Met. 42, 1249-1260 ( 2023). https://doi.org/10.1007/s12598-022-02189-6
|
268. |
Y. Zhao, Y. Alsaid, B. Yao, Y. Zhang, B. Zhang et al., Wood-inspired morphologically tunable aligned hydrogel for high-performance flexible all-solid-state supercapacitors. Adv. Funct. Mater. 30, 1909133 ( 2020). https://doi.org/10.1002/adfm.201909133
|
269. |
Y. Yoon, K. Lee, S. Kwon, S. Seo, H. Yoo et al., Vertical alignments of graphene sheets spatially and densely piled for fast ion diffusion in compact supercapacitors. ACS Nano 8, 4580-4590 ( 2014). https://doi.org/10.1021/nn500150j
|
270. |
Z. Peng, C. Yu, W. Zhong, Facile preparation of a 3D porous aligned graphene-based wall network architecture by confined self-assembly with shape memory for artificial muscle, pressure sensor, and flexible supercapacitor. ACS Appl. Mater. Interfaces 14, 17739-17753 ( 2022). https://doi.org/10.1021/acsami.2c00987
|
271. |
H. Liu, T. Xu, C. Cai, K. Liu, W. Liu et al., Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv. Funct. Mater. 32, 2270149 ( 2022). https://doi.org/10.1002/adfm.202270149
|
272. |
|
273. |
G. Li, D. Dong, G. Hong, L. Yan, X. Zhang et al., High-efficiency cryo-thermocells assembled with anisotropic holey graphene aerogel electrodes and a eutectic redox electrolyte. Adv. Mater. 31, e1901403 ( 2019). https://doi.org/10.1002/adma.201901403
|
274. |
|
275. |
E. Zhu, K. Pang, Y. Chen, S. Liu, X. Liu et al., Ultra-stable graphene aerogels for electromagnetic interference shielding. Sci. China Mater. 66, 1106-1113 ( 2023). https://doi.org/10.1007/s40843-022-2208-x
|
276. |
T. Chen, M. Li, L. Zhou, X. Ding, D. Lin et al., Bio-inspired biomass-derived carbon aerogels with superior mechanical property for oil-water separation. ACS Sustain. Chem. Eng. 8, 6458-6465 ( 2020). https://doi.org/10.1021/acssuschemeng.0c00910
|
277. |
C. Dai, W. Sun, Z. Xu, J. Liu, J. Chen et al., Assembly of ultralight dual network graphene aerogel with applications for selective oil absorption. Langmuir 36, 13698-13707 ( 2020). https://doi.org/10.1021/acs.langmuir.0c02664
|
278. |
X. Cao, J. Zhang, S. Chen, R.J. Varley, K. Pan, 1D/2D nanomaterials synergistic, compressible, and response rapidly 3D graphene aerogel for piezoresistive sensor. Adv. Funct. Mater. 30, 2003618 ( 2020). https://doi.org/10.1002/adfm.202003618
|
279. |
X. Peng, K. Wu, Y. Hu, H. Zhuo, Z. Chen et al., A mechanically strong and sensitive CNT/rGO-CNF carbon aerogel for piezoresistive sensors. J. Mater. Chem. A 6, 23550-23559 ( 2018). https://doi.org/10.1039/C8TA09322A
|
280. |
|
281. |
X. He, Q. Liu, W. Zhong, J. Chen, D. Sun et al., Strategy of constructing light-weight and highly compressible graphene-based aerogels with an ordered unique configuration for wearable piezoresistive sensors. ACS Appl. Mater. Interfaces 11, 19350-19362 ( 2019). https://doi.org/10.1021/acsami.9b02591
|
282. |
X. Chen, D. Lai, B. Yuan, M.-L. Fu, Fabrication of superelastic and highly conductive graphene aerogels by precisely “unlocking” the oxygenated groups on graphene oxide sheets. Carbon 162, 552-561 ( 2020). https://doi.org/10.1016/j.carbon.2020.02.082
|
283. |
Q. Wu, Y. Qiao, R. Guo, S. Naveed, T. Hirtz et al., Triode-mimicking graphene pressure sensor with positive resistance variation for physiology and motion monitoring. ACS Nano 14, 10104-10114 ( 2020). https://doi.org/10.1021/acsnano.0c03294
|
284. |
C. Long, X. Xie, J. Fu, Q. Wang, H. Guo et al., Supercapacitive brophene-graphene aerogel as elastic-electrochemical dielectric layer for sensitive pressure sensors. J. Colloid Interface Sci. 601, 355-364 ( 2021). https://doi.org/10.1016/j.jcis.2021.05.116
|
285. |
H. Tian, Y. Shu, X.F. Wang, M.A. Mohammad, Z. Bie et al., A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range. Sci. Rep. 5, 8603 ( 2015). https://doi.org/10.1038/srep08603
|
286. |
J. Xiao, Y. Tan, Y. Song, Q. Zheng, A flyweight and superelastic graphene aerogel as a high-capacity adsorbent and highly sensitive pressure sensor. J. Mater. Chem. A 6, 9074-9080 ( 2018). https://doi.org/10.1039/C7TA11348J
|
287. |
T. Zhai, L. Verdolotti, S. Kacilius, P. Cerruti, G. Gentile et al., High piezo-resistive performances of anisotropic composites realized by embedding rGO-based chitosan aerogels into open cell polyurethane foams. Nanoscale 11, 8835-8844 ( 2019). https://doi.org/10.1039/c9nr00157c
|
288. |
T. Zhai, J. Li, X. Wang, W. Yan, C. Zhang et al., Carbon-based aerogel in three-dimensional polyurethane scaffold: the effect of in situ unidirectional aerogel growth on piezoresistive properties. Sens. Actuat. A Phys. 333, 113306 ( 2022). https://doi.org/10.1016/j.sna.2021.113306
|
289. |
H. Zhuo, Y. Hu, X. Tong, Z. Chen, L. Zhong et al., A supercompressible, elastic, and bendable carbon aerogel with ultrasensitive detection limits for compression strain, pressure, and bending angle. Adv. Mater. 30, e1706705 ( 2018). https://doi.org/10.1002/adma.201706705
|
290. |
S. Wu, S. Tian, R. Jian, L. Zhou, T. Luo et al., Bio-inspired salt-fouling resistant graphene evaporators for solar desalination of hypersaline brines. Desalination 546, 116197 ( 2023). https://doi.org/10.1016/j.desal.2022.116197
|
291. |
H. Zhang, H. Liu, S. Chen, X. Zhao, F. Yang et al., Preparation of three-dimensional graphene-based sponge as photo-thermal conversion material to desalinate seawater. Chem. Res. Chin. Univ. 38, 1425-1434 ( 2022). https://doi.org/10.1007/s40242-022-1500-8
|
292. |
X. Meng, J. Yang, S. Ramakrishna, Y. Sun, Y. Dai, Gradient-aligned Au/graphene meshes with confined heat at multiple levels for solar evaporation and anti-gravity catalytic conversion. J. Mater. Chem. A 8, 16570-16581 ( 2020). https://doi.org/10.1039/D0TA04986G
|
293. |
Y. Hu, H. Yao, Q. Liao, T. Lin, H. Cheng et al., The promising solar-powered water purification based on graphene functional architectures. EcoMat 4, e12205 ( 2022). https://doi.org/10.1002/eom2.12205
|
294. |
L. Chen, J. Wei, Q. Tian, Z. Han, L. Li et al., Dual-functional graphene oxide-based photothermal materials with aligned channels and oleophobicity for efficient solar steam generation. Langmuir 37, 10191-10199 ( 2021). https://doi.org/10.1021/acs.langmuir.1c01647
|
295. |
Z. Luo, X. Wang, D. Yang, S. Zhang, T. Zhao et al., Photothermal hierarchical carbon nanotube/reduced graphene oxide microspherical aerogels with radially orientated microchannels for efficient cleanup of crude oil spills. J. Colloid Interface Sci. 570, 61-71 ( 2020). https://doi.org/10.1016/j.jcis.2020.02.097
|
296. |
|
297. |
M. Jin, Z. Wu, F. Guan, D. Zhang, B. Wang et al., Hierarchically designed three-dimensional composite structure on a cellulose-based solar steam generator. ACS Appl. Mater. Interfaces 14, 12284-12294 ( 2022). https://doi.org/10.1021/acsami.1c24847
|
298. |
X. Zhao, X.-J. Zha, L.-S. Tang, J.-H. Pu, K. Ke et al., Self-assembled core-shell polydopamine@MXene with synergistic solar absorption capability for highly efficient solar-to-vapor generation. Nano Res. 13, 255-264 ( 2020). https://doi.org/10.1007/s12274-019-2608-0
|
299. |
Z. Lei, X. Sun, S. Zhu, K. Dong, X. Liu et al., Nature inspired MXene-decorated 3D honeycomb-fabric architectures toward efficient water desalination and salt harvesting. Nano-Micro Lett. 14, 10 ( 2021). https://doi.org/10.1007/s40820-021-00748-7
|
300. |
F. Wu, S. Qiang, X.-D. Zhu, W. Jiao, L. Liu et al., Fibrous MXene aerogels with tunable pore structures for high-efficiency desalination of contaminated seawater. Nano-Micro Lett. 15, 71 ( 2023). https://doi.org/10.1007/s40820-023-01030-8
|
301. |
Q. Zhang, G. Yi, Z. Fu, H. Yu, S. Chen et al., Vertically aligned Janus MXene-based aerogels for solar desalination with high efficiency and salt resistance. ACS Nano 13, 13196-13207 ( 2019). https://doi.org/10.1021/acsnano.9b06180
|
302. |
H. Gao, N. Bing, Z. Bao, H. Xie, W. Yu, Sandwich-structured MXene/wood aerogel with waste heat utilization for continuous desalination. Chem. Eng. J. 454, 140362 ( 2023). https://doi.org/10.1016/j.cej.2022.140362
|
303. |
Z. Zheng, H. Liu, D. Wu, X. Wang, Polyimide/MXene hybrid aerogel-based phase-change composites for solar-driven seawater desalination. Chem. Eng. J. 440, 135862 ( 2022). https://doi.org/10.1016/j.cej.2022.135862
|
304. |
H. Zhang, X. Shen, E. Kim, M. Wang, J.-H. Lee et al., Integrated water and thermal managements in bioinspired hierarchical MXene aerogels for highly efficient solar-powered water evaporation. Adv. Funct. Mater. 32, 2111794 ( 2022). https://doi.org/10.1002/adfm.202111794
|
305. |
W. Li, X. Li, W. Chang, J. Wu, P. Liu et al., Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation. Nano Res. 13, 3048-3056 ( 2020). https://doi.org/10.1007/s12274-020-2970-y
|
306. |
C. Wu, S. Zhou, C. Wang, J. Zhang, Z. Yang et al., Aerogels based on MXene nanosheet/reduced graphene oxide composites with vertically aligned channel structures for solar-driven vapor generation. ACS Appl. Nano Mater. 6, 4455-4464 ( 2023). https://doi.org/10.1021/acsanm.2c05548
|
307. |
|
308. |
Z. Yin, H. Wang, M. Jian, Y. Li, K. Xia et al., Extremely black vertically aligned carbon nanotube arrays for solar steam generation. ACS Appl. Mater. Interfaces 9, 28596-28603 ( 2017). https://doi.org/10.1021/acsami.7b08619
|