1. |
T. Zhang, J. Ou-Yang, X. Yang, W. Wei, B. Zhu, High performance KNN-based single crystal thick film for ultrasound application. Electron. Mater. Lett. 15, 1-6 ( 2019). https://doi.org/10.1007/s13391-018-0091-5
|
2. |
|
3. |
K. Chen, S. Kim, M. Je, H. Choi, Z. Shi et al., Ultrasonic plasma engineering toward facile synthesis of single-atom M-N 4/N-doped carbon (M = Fe, co) as superior oxygen electrocatalyst in rechargeable zinc-air batteries. Nano-Micro Lett. 13, 60 ( 2021). https://doi.org/10.1007/s40820-020-00581-4
|
4. |
T. Liu, Q. Wan, C. Zou, M. Chen, G. Wan et al., Stepwise drug release from a nanoplatform under MR-assisted focused ultrasound stimulation. Chem. Eng. J. 417, 128004 ( 2021). https://doi.org/10.1016/j.cej.2020.128004
|
5. |
T. Zhang, Z. Wang, H. Liang, Z. Wu, J. Li et al., Transcranial focused ultrasound stimulation of periaqueductal gray for analgesia. IEEE Trans. Biomed. Eng. 69, 3155-3162 ( 2022). https://doi.org/10.1109/TBME.2022.3162073
|
6. |
H. Zhou, L. Niu, X. Xia, Z. Lin, X. Liu et al., Wearable ultrasound improves motor function in an MPTP mouse model of Parkinson’s disease. IEEE Trans. Biomed. Eng. 66, 3006-3013 ( 2019). https://doi.org/10.1109/TBME.2019.2899631
|
7. |
W. Lee, P. Croce, R.W. Margolin, A. Cammalleri, K. Yoon et al., Transcranial focused ultrasound stimulation of motor cortical areas in freely-moving awake rats. BMC Neurosci. 19, 57 ( 2018). https://doi.org/10.1186/s12868-018-0459-3
|
8. |
Z. Wang, Y. Pan, H. Huang, Y. Zhang, Y. Li et al., Enhanced thrombolysis by endovascular low-frequency ultrasound with bifunctional microbubbles in venous thrombosis: in vitro and in vivo study. Front. Bioeng. Biotechnol. 10, 965769 ( 2022). https://doi.org/10.3389/fbioe.2022.965769
|
9. |
T. Zhang, H. Liang, Z. Wang, C. Qiu, Y.B. Peng et al., Piezoelectric ultrasound energy-harvesting device for deep brain stimulation and analgesia applications. Sci. Adv. 8, eabk0159 ( 2022). https://doi.org/10.1126/sciadv.abk0159
|
10. |
L. Jiang, Y. Yang, R. Chen, G. Lu, R. Li et al., Ultrasound-induced wireless energy harvesting for potential retinal electrical stimulation application. Adv. Funct. Mater. 29, 1902522 ( 2019). https://doi.org/10.1002/adfm.201902522
|
11. |
R. Hinchet, H.-J. Yoon, H. Ryu, M.-K. Kim, E.-K. Choi et al., Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 365, 491-494 ( 2019). https://doi.org/10.1126/science.aan3997
|
12. |
X. Du, J. Li, G. Niu, J.-H. Yuan, K.-H. Xue et al., Lead halide perovskite for efficient optoacoustic conversion and application toward high-resolution ultrasound imaging. Nat. Commun. 12, 3348 ( 2021). https://doi.org/10.1038/s41467-021-23788-4
|
13. |
S. Yue, F. Lin, Q. Zhang, N. Epie, S. Dong et al., Gold-implanted plasmonic quartz plate as a launch pad for laser-driven photoacoustic microfluidic pumps. Proc. Natl. Acad. Sci. U.S.A. 116, 6580-6585 ( 2019). https://doi.org/10.1073/pnas.1818911116
|
14. |
L. Wang, Y. Zhao, B. Zheng, Y. Huo, Y. Fan et al., Ultrawide-bandwidth high-resolution all-optical intravascular ultrasound using miniaturized photoacoustic transducer. Sci. Adv. 9, eadg8600 ( 2023). https://doi.org/10.1126/sciadv.adg8600
|
15. |
|
16. |
|
17. |
T. Lee, W. Luo, Q. Li, H. Demirci, L.J. Guo, Laser-induced focused ultrasound for cavitation treatment: toward high-precision invisible sonic scalpel. Small ( 2017). https://doi.org/10.1002/smll.201701555
|
18. |
|
19. |
Y. Li, Y. Jiang, L. Lan, X. Ge, R. Cheng et al., Optically-generated focused ultrasound for noninvasive brain stimulation with ultrahigh precision. Light Sci. Appl. 11, 321 ( 2022). https://doi.org/10.1038/s41377-022-01004-2
|
20. |
|
21. |
|
22. |
H.W. Baac, J.G. Ok, T. Lee, L.J. Guo, Nano-structural characteristics of carbon nanotube-polymer composite films for high-amplitude optoacoustic generation. Nanoscale 7, 14460-14468 ( 2015). https://doi.org/10.1039/c5nr03769g
|
23. |
|
24. |
J. Kang, D. Son, G.N. Wang, Y. Liu, J. Lopez et al., Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv. Mater. 30, e1706846 ( 2018). https://doi.org/10.1002/adma.201706846
|
25. |
S. Bode, L. Zedler, F.H. Schacher, B. Dietzek, M. Schmitt et al., Self-healing polymer coatings based on crosslinked metallosupramolecular copolymers. Adv. Mater. 25, 1634-1638 ( 2013). https://doi.org/10.1002/adma.201203865
|
26. |
|
27. |
|
28. |
|
29. |
J. Dai, Z. Wang, Z. Wu, Z. Fang, S. Heliu et al., Shape memory polymer constructed by π-π stacking with ultrafast photoresponse and self-healing performance. ACS Appl. Polym. Mater. 5, 2575-2582 ( 2023). https://doi.org/10.1021/acsapm.2c02192
|
30. |
M. Rajczakowska, M. Szeląg, K. Habermehl-Cwirzen, H. Hedlund, A. Cwirzen, Autogenous self-healing of thermally damaged cement paste with carbon nanomaterials subjected to different environmental stimulators. J. Build. Eng. 72, 106619 ( 2023). https://doi.org/10.1016/j.jobe.2023.106619
|
31. |
J. Xie, L. Gao, J. Hu, Q. Li, J. He, Self-healing of electrical damage in thermoset polymers via anionic polymerization. J. Mater. Chem. C 8, 6025-6033 ( 2020). https://doi.org/10.1039/C9TC06989E
|
32. |
C.-H. Li, C. Wang, C. Keplinger, J.-L. Zuo, L. Jin et al., A highly stretchable autonomous self-healing elastomer. Nat. Chem. 8, 618-624 ( 2016). https://doi.org/10.1038/nchem.2492
|
33. |
T.A. Kompan, A.S. Korenev, A.Y. Lukin, Investigation of thermal expansion of a glass-ceramic material with an extra-low thermal linear expansion coefficient. Int. J. Thermophys. 29, 1896-1905 ( 2008). https://doi.org/10.1007/s10765-008-0477-y
|
34. |
T. Buma, M. Spisar, M. O’Donnell, High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film. Appl. Phys. Lett. 79, 548-550 ( 2001). https://doi.org/10.1063/1.1388027
|
35. |
R.J. Colchester, C.A. Mosse, D.S. Bhachu, J.C. Bear, C.J. Carmalt et al., Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings. Appl. Phys. Lett. 104, 173502 ( 2014). https://doi.org/10.1063/1.4873678
|
36. |
T. Borca-Tasciuc, S. Vafaei, D.-A. Borca-Tasciuc, B.Q. Wei, R. Vajtai et al., Anisotropic thermal diffusivity of aligned multiwall carbon nanotube arrays. J. Appl. Phys. 98, 054309 ( 2005). https://doi.org/10.1063/1.2034079
|
37. |
J. Kim, H. Kim, W.-Y. Chang, W. Huang, X. Jiang et al., Candle soot carbon nanoparticles in photoacoustics: advantages and challenges for laser ultrasound transmitters. IEEE Nanotechnol. Mag. 13, 13-28 ( 2019). https://doi.org/10.1109/MNANO.2019.2904773
|
38. |
B.-Y. Hsieh, J. Kim, J. Zhu, S. Li, X. Zhang et al., A laser ultrasound transducer using carbon nanofibers-polydimethylsiloxane composite thin film. Appl. Phys. Lett. 106, 021902 ( 2015). https://doi.org/10.1063/1.4905659
|
39. |
R.J. Colchester, E.J. Alles, A.E. Desjardins, A directional fibre optic ultrasound transmitter based on a reduced graphene oxide and polydimethylsiloxane composite. Appl. Phys. Lett. 114, 113505 ( 2019). https://doi.org/10.1063/1.5089750
|
40. |
H. Won Baac, J.G. Ok, H.J. Park, T. Ling, S.L. Chen et al., Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation. Appl. Phys. Lett. 97, 234104 ( 2010). https://doi.org/10.1063/1.3522833
|
41. |
E. Petrova, S. Ermilov, R. Su, V. Nadvoretskiy, A. Conjusteau et al., Using optoacoustic imaging for measuring the temperature dependence of Grüneisen parameter in optically absorbing solutions. Opt. Exp. 21, 25077-25090 ( 2013). https://doi.org/10.1364/OE.21.025077
|
42. |
|
43. |
|
44. |
|
45. |
|
46. |
|
47. |
D. Wu, J. Zhang, F. Xu, X. Wen, P. Li et al., A paper-based microfluidic Dot-ELISA system with smartphone for the detection of influenza A. Microfluid. Nanofluid. 21, 43 ( 2017). https://doi.org/10.1007/s10404-017-1879-6
|
48. |
|
49. |
B. Petit, F. Yan, F. Tranquart, E. Allémann, Microbubbles and ultrasound-mediated thrombolysis: a review of recent in vitro studies. J. Drug Deliv. Sci. Technol. 22, 381-392 ( 2012). https://doi.org/10.1016/s1773-2247(12)50065-1
|
50. |
J.H. Nederhoed, M. Tjaberinga, R.H.J. Otten, J.M. Evers, R.J.P. Musters et al., Therapeutic use of microbubbles and ultrasound in acute peripheral arterial thrombosis: a systematic review. Ultrasound Med. Biol. 47, 2821-2838 ( 2021). https://doi.org/10.1016/j.ultrasmedbio.2021.06.001
|
51. |
|
52. |
B.L. Turner, S. Senevirathne, K. Kilgour, D. McArt, M. Biggs et al., Ultrasound-powered implants: a critical review of piezoelectric material selection and applications. Adv. Healthc. Mater. 10, e2100986 ( 2021). https://doi.org/10.1002/adhm.202100986
|
53. |
X. Wan, P. Chen, Z. Xu, X. Mo, H. Jin et al., Hybrid-piezoelectret based highly efficient ultrasonic energy harvester for implantable electronics. Adv. Funct. Mater. 32, 2200589 ( 2022). https://doi.org/10.1002/adfm.202200589
|
54. |
H. Sheng, X. Zhang, J. Liang, M. Shao, E. Xie et al., Recent advances of energy solutions for implantable bioelectronics. Adv. Healthc. Mater. 10, e2100199 ( 2021). https://doi.org/10.1002/adhm.202100199
|
55. |
T. de Rességuier, S. Couturier, M. Boustie, J. David, G. Niérat et al., Characterization of laser-driven shocks of high intensity using piezoelectric polymers. J. Appl. Phys. 80, 3656-3661 ( 1996). https://doi.org/10.1063/1.363312
|
56. |
H.Y. Lee, M.S. Kwak, G.-T. Hwang, H.S. Ahn, R.A. Taylor et al., Direct Current piezoelectric energy harvesting based on plasmon-enhanced solar radiation pressure. Adv. Opt. Mater. 11, 2202212 ( 2023). https://doi.org/10.1002/adom.202202212
|