48. |
J. Dong, Y. Jiang, Q. Wei, S. Tan, Y. Xu et al., Strongly coupled pyridine-V 2 O 5 ·nH 2 O nanowires with intercalation pseudocapacitance and stabilized layer for high energy sodium ion capacitors. Small 15, e1900379 ( 2019). https://doi.org/10.1002/smll.201900379
|
49. |
X. Xu, Y. Qian, C. Wang, Z. Bai, C. Wang et al., Enhanced charge transfer and reaction kinetics of vanadium pentoxide for zinc storage via nitrogen interstitial doping. Chem. Eng. J. 451, 138770 ( 2023). https://doi.org/10.1016/j.cej.2022.138770
|
50. |
|
51. |
Y. Zheng, Z. Yao, Z. Shadike, M. Lei, J. Liu et al., Defect-concentration-mediated T-Nb 2O 5 anodes for durable and fast-charging Li-ion batteries. Adv. Funct. Mater. 32, 2107060 ( 2022). https://doi.org/10.1002/adfm.202107060
|
52. |
A. Eftekhari, Energy efficiency: a critically important but neglected factor in battery research. Sustain. Energy Fuels 1, 2053-2060 ( 2017). https://doi.org/10.1039/C7SE00350A
|
53. |
M. Wang, J. Zhang, L. Zhang, J. Li, W. Wang et al., Graphene-like vanadium oxygen hydrate (VOH) nanosheets intercalated and exfoliated by polyaniline (PANI) for aqueous zinc-ion batteries (ZIBs). ACS Appl. Mater. Interfaces 12, 31564-31574 ( 2020). https://doi.org/10.1021/acsami.0c10183
|
54. |
K. Zhu, T. Wu, K. Huang, NaCa 0.6V 6O 16·3H 2O as an ultra-stable cathode for Zn-ion batteries: the roles of pre-inserted dual-cations and structural water in V3O8 layer. Adv. Energy Mater. 9, 1901968 ( 2019). https://doi.org/10.1002/aenm.201901968
|
55. |
F. Zhang, X. Sun, M. Du, X. Zhang, W. Dong et al., Weaker interactions in Zn 2+ and organic ion-pre-intercalated vanadium oxide toward highly reversible zinc-ion batteries. Energy Environ. Mater. 4, 620-630 ( 2021). https://doi.org/10.1002/eem2.12145
|
56. |
P. He, G. Zhang, X. Liao, M. Yan, X. Xu et al., Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy Mater. 8, 1702463 ( 2018). https://doi.org/10.1002/aenm.201702463
|
57. |
C. Xia, J. Guo, P. Li, X. Zhang, H.N. Alshareef, Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode. Angew. Chem. Int. Ed. 57, 3943-3948 ( 2018). https://doi.org/10.1002/anie.201713291
|
58. |
S. Zhang, L. Chen, D. Dong, Y. Kong, J. Zhang et al., A mV 2O 5 with binary phases as high-performance cathode materials for zinc-ion batteries: effect of the pre-intercalated cations A and reversible transformation of coordination polyhedra. ACS Appl. Mater. Interfaces 14, 24415-24424 ( 2022). https://doi.org/10.1021/acsami.2c04252
|
59. |
B. Feng, D. Sun, H. Wang, S. Tan, H. Zhang, A simple method for the synthesis of KV 3O 80.42H 2O nanorod and its lithium insertion/deinsertion properties. Int. J. Electrochem. Sci. 8, 1095-1102 ( 2013). https://doi.org/10.1016/s1452-3981(23)14083-1
|
60. |
D. Bin, W. Huo, Y. Yuan, J. Huang, Y. Liu et al., Organic-inorganic-induced polymer intercalation into layered composites for aqueous zinc-ion battery. Chem 6, 968-984 ( 2020). https://doi.org/10.1016/j.chempr.2020.02.001
|
61. |
|
62. |
J. Liu, J. Wang, C. Xu, H. Jiang, C. Li et al., Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv. Sci. 5, 1700322 ( 2017). https://doi.org/10.1002/advs.201700322
|
63. |
V. Verma, S. Kumar, W. Manalastas Jr., J. Zhao, R. Chua et al., Layered VOPO 4 as a cathode material for rechargeable zinc-ion battery: effect of polypyrrole intercalation in the host and water concentration in the electrolyte. ACS Appl. Energy Mater. 2, 8667-8674 ( 2019). https://doi.org/10.1021/acsaem.9b01632
|
64. |
J. Lai, H. Zhu, X. Zhu, H. Koritala, Y. Wang, Interlayer-expanded V 6O 13· nH 2O architecture constructed for an advanced rechargeable aqueous zinc-ion battery. ACS Appl. Energy Mater. 2, 1988-1996 ( 2019). https://doi.org/10.1021/acsaem.8b02054
|
1. |
|
2. |
|
3. |
Z. Xing, S. Wang, A. Yu, Z. Chen, Aqueous intercalation-type electrode materials for grid-level energy storage: beyond the limits of lithium and sodium. Nano Energy 50, 229-244 ( 2018). https://doi.org/10.1016/j.nanoen.2018.05.049
|
4. |
H. Zheng, S. Wang, S. Liu, J. Wu, J. Guan et al., The heterointerface between Fe 1/NC and selenides boosts reversible oxygen electrocatalysis. Adv. Funct. Mater. 33, 2300815 ( 2023). https://doi.org/10.1002/adfm.202300815
|
5. |
D. Deng, J. Wu, Q. Feng, X. Zhao, M. Liu et al., Highly reversible zinc-air batteries at-40 ℃ enabled by anion-mediated biomimetic fat. Adv. Funct. Mater. ( 2023). https://doi.org/10.1002/adfm.202308762
|
6. |
X. Jia, C. Liu, Z.G. Neale, J. Yang, G. Cao, Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 120, 7795-7866 ( 2020). https://doi.org/10.1021/acs.chemrev.9b00628
|
7. |
J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14, 42 ( 2022). https://doi.org/10.1007/s40820-021-00782-5
|
8. |
|
9. |
|
10. |
Q. Zong, Y. Wu, C. Liu, Q. Wang, Y. Zhuang et al., Tailoring layered transition metal compounds for high-performance aqueous zinc-ion batteries. Energy Storage Mater. 52, 250-283 ( 2022). https://doi.org/10.1016/j.ensm.2022.08.007
|
11. |
Y. Chen, D. Ma, K. Ouyang, M. Yang, S. Shen et al., A multifunctional anti-proton electrolyte for high-rate and super-stable aqueous Zn-vanadium oxide battery. Nano-Micro Lett. 14, 154 ( 2022). https://doi.org/10.1007/s40820-022-00907-4
|
12. |
Y. Wang, Y. Zhang, G. Gao, Y. Fan, R. Wang et al., Effectively modulating oxygen vacancies in flower-like δ-MnO 2 nanostructures for large capacity and high-rate zinc-ion storage. Nano-Micro Lett. 15, 219 ( 2023). https://doi.org/10.1007/s40820-023-01194-3
|
13. |
X. Jia, R. Tian, C. Liu, J. Zheng, M. Tian et al., Stability and kinetics enhancement of hydrated vanadium oxide via sodium-ion pre-intercalation. Mater. Today Energy 28, 101063 ( 2022). https://doi.org/10.1016/j.mtener.2022.101063
|
14. |
C. Liu, Z. Neale, J. Zheng, X. Jia, J. Huang et al., Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 12, 2273-2285 ( 2019). https://doi.org/10.1039/C9EE00956F
|
15. |
S. Tepavcevic, H. Xiong, V.R. Stamenkovic, X. Zuo, M. Balasubramanian et al., Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries. ACS Nano 6, 530-538 ( 2012). https://doi.org/10.1021/nn203869a
|
16. |
Q. Wang, S. Tang, Z. Wang, J. Wu, Y. Bai et al., Electrolyte tuned robust interface toward fast-charging Zn-air battery with atomic Mo site catalyst. Adv. Funct. Mater. 33, 2307390 ( 2023). https://doi.org/10.1002/adfm.202307390
|
17. |
|
18. |
D. Kundu, S. Hosseini Vajargah, L. Wan, B. Adams, D. Prendergast et al., Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy Environ. Sci. 11, 881-892 ( 2018). https://doi.org/10.1039/C8EE00378E
|
19. |
Y. Li, D. Zhang, S. Huang, H.Y. Yang, Guest-species-incorporation in manganese/vanadium-based oxides: towards high performance aqueous zinc-ion batteries. Nano Energy 85, 105969 ( 2021). https://doi.org/10.1016/j.nanoen.2021.105969
|
20. |
C. Liu, M. Tian, M. Wang, J. Zheng, S. Wang et al., Catalyzing zinc-ion intercalation in hydrated vanadates for aqueous zinc-ion batteries. J. Mater. Chem. A 8, 7713-7723 ( 2020). https://doi.org/10.1039/d0ta01468k
|
21. |
L. Xing, C. Zhang, M. Li, P. Hu, X. Zhang et al., Revealing excess Al 3+ preinsertion on altering diffusion paths of aluminum vanadate for zinc-ion batteries. Energy Storage Mater. 52, 291-298 ( 2022). https://doi.org/10.1016/j.ensm.2022.07.044
|
22. |
M. Tian, C. Liu, J. Zheng, X. Jia, E.P. Jahrman et al., Structural engineering of hydrated vanadium oxide cathode by K+ incorporation for high-capacity and long-cycling aqueous zinc ion batteries. Energy Storage Mater. 29, 9-16 ( 2020). https://doi.org/10.1016/j.ensm.2020.03.024
|
23. |
Z. Liu, H. Sun, L. Qin, X. Cao, J. Zhou et al., Interlayer doping in layered vanadium oxides for low-cost energy storage: sodium-ion batteries and aqueous zinc-ion batteries. ChemNanoMat 6, 1553-1566 ( 2020). https://doi.org/10.1002/cnma.202000384
|
24. |
Q. Zhao, A. Song, S. Ding, R. Qin, Y. Cui et al., Preintercalation strategy in manganese oxides for electrochemical energy storage: review and prospects. Adv. Mater. 32, e2002450 ( 2020). https://doi.org/10.1002/adma.202002450
|
25. |
L. Ma, N. Li, C. Long, B. Dong, D. Fang et al., Achieving both high voltage and high capacity in aqueous zinc-ion battery for record high energy density. Adv. Funct. Mater. 29, 1906142 ( 2019). https://doi.org/10.1002/adfm.201906142
|
26. |
X. Zhao, L. Mao, Q. Cheng, F. Liao, G. Yang et al., Interlayer engineering of preintercalated layered oxides as cathode for emerging multivalent metal-ion batteries: zinc and beyond. Energy Storage Mater. 38, 397-437 ( 2021). https://doi.org/10.1016/j.ensm.2021.03.005
|
27. |
S. Liu, H. Zhu, B. Zhang, G. Li, H. Zhu et al., Tuning the kinetics of zinc-ion insertion/extraction in V 2 O 5 by in situ polyaniline intercalation enables improved aqueous zinc-ion storage performance. Adv. Mater. 32, e2001113 ( 2020). https://doi.org/10.1002/adma.202001113
|
28. |
S. Zanarini, F. Di Lupo, A. Bedini, S. Vankova, N. Garino et al., Three-colored electrochromic lithiated vanadium oxides: the role of surface superoxides in the electro-generation of the red state. J. Mater. Chem. C 2, 8854-8857 ( 2014). https://doi.org/10.1039/C4TC01123F
|
29. |
H.T. Evans Jr., J.E. Post, D.R. Ross, J.A. Nelen, The crystal structure and crystal chemistry of fernandinite and corvusite. Can. Mineral. 32, 339-351 (1994)
|
30. |
N. Baffier, L. Znaidi, J.C. Badot, Ionic hydration number in V 2O 5 intercalated xerogels V 2O 5 intercalated xerogels M x(H 2O) yV 2O 5. J. Chem. Soc. Faraday Trans. 86(14), 2623-2628 ( 1990). https://doi.org/10.1039/FT9908602623
|
31. |
|
32. |
S. Ameen, M.S. Akhtar, Y.S. Kim, H.S. Shin, Synthesis and electrochemical impedance properties of CdS nanoparticles decorated polyaniline nanorods. Chem. Eng. J. 181-182, 806-812 ( 2012). https://doi.org/10.1016/j.cej.2011.11.111
|
33. |
Y. Zhang, R. Huang, X. Wang, Z. Wang, B. Song et al., Facile large-scale preparation of vanadium pentoxide-polypyrrole composite for aqueous zinc-ion batteries. J. Alloys Compd. 907, 164434 ( 2022). https://doi.org/10.1016/j.jallcom.2022.164434
|
34. |
Y. Tong, S. Su, X. Li, B. Liang, J. Peng et al., Synergistic iron ion and alkylammonium cation intercalated vanadium oxide cathode for highly efficient aqueous zinc ion battery. J. Power. Sources 528, 231226 ( 2022). https://doi.org/10.1016/j.jpowsour.2022.231226
|
65. |
M. Du, C. Liu, F. Zhang, W. Dong, X. Zhang et al., Tunable layered (Na, Mn)V 8O 20· n H 2O cathode material for high-performance aqueous zinc ion batteries. Adv. Sci. 7, 2000083 ( 2020). https://doi.org/10.1002/advs.202000083
|
66. |
|
67. |
|
68. |
J.-J. Ye, P.-H. Li, H.-R. Zhang, Z.-Y. Song, T. Fan et al., Manipulating oxygen vacancies to spur ion kinetics in V 2O 5 structures for superior aqueous zinc-ion batteries. Adv. Funct. Mater. 33, 2305659 ( 2023). https://doi.org/10.1002/adfm.202305659
|
69. |
|
70. |
Z. Feng, J. Sun, Y. Liu, H. Jiang, T. Hu et al., Polypyrrole-intercalation tuning lamellar structure of V 2O 5·nH 2O boosts fast zinc-ion kinetics for aqueous zinc-ion battery. J. Power. Sources 536, 231489 ( 2022). https://doi.org/10.1016/j.jpowsour.2022.231489
|
71. |
|
72. |
W. Sun, F. Wang, S. Hou, C. Yang, X. Fan et al., Zn/MnO 2 battery chemistry with H + and Zn 2+ coinsertion. J. Am. Chem. Soc. 139, 9775-9778 ( 2017). https://doi.org/10.1021/jacs.7b04471
|
35. |
Q. Wang, Q. Feng, Y. Lei, S. Tang, L. Xu et al., Quasi-solid-state Zn-air batteries with an atomically dispersed cobalt electrocatalyst and organohydrogel electrolyte. Nat. Commun. 13, 3689 ( 2022). https://doi.org/10.1038/s41467-022-31383-4
|
36. |
|
37. |
|
38. |
|
39. |
E. Hryha, E. Rutqvist, L. Nyborg, Stoichiometric vanadium oxides studied by XPS. Surf. Interface Anal. 44(8), 1022-1025 ( 2012). https://doi.org/10.1002/sia.3844
|
40. |
L.R. De Jesus, G.A. Horrocks, Y. Liang, A. Parija, C. Jaye et al., Mapping polaronic states and lithiation gradients in individual V 2O 5 nanowires. Nat. Commun. 7, 12022 ( 2016). https://doi.org/10.1038/ncomms12022
|
41. |
D. Goodacre, M. Blum, C. Buechner, H. Hoek, S.M. Gericke et al., Water adsorption on vanadium oxide thin films in ambient relative humidity. J. Chem. Phys. 152, 044715 ( 2020). https://doi.org/10.1063/1.5138959
|
42. |
|
43. |
T. Hu, Z. Feng, Y. Zhang, Y. Liu, J. Sun et al., “Double guarantee mechanism” of Ca 2+-intercalation and rGO-integration ensures hydrated vanadium oxide with high performance for aqueous zinc-ion batteries. Inorg. Chem. Front. 8, 79-89 ( 2021). https://doi.org/10.1039/D0QI00954G
|
44. |
T. Hu, Y. Liu, Y. Zhang, M. Chen, J. Zheng et al., 3D hierarchical porous V 3O 7·H 2O nanobelts/CNT/reduced graphene oxide integrated composite with synergistic effect for supercapacitors with high capacitance and long cycling life. J. Colloid Interface Sci. 531, 382-393 ( 2018). https://doi.org/10.1016/j.jcis.2018.07.060
|
45. |
C. O’Dwyer, D. Navas, V. Lavayen, E. Benavente, M.A. Santa Ana, G. Gonzalez, S.B. Newcomb, C.M. Sotomayor Torres, Nano-urchin: the formation and structure of high-density spherical clusters of vanadium oxide nanotubes. Chem. Mater. 18(13), 3016-3022 ( 2006). https://doi.org/10.1021/cm0603809
|
46. |
E. Ruiz-Hitzky, B. Casal, Interlayer adsorption of ammonia and pyridine in V 2O 5 xerogel. J. Chem. Soc. Faraday Trans. Phys. Chem. Condensed Phases. 82(5), 1597-1604 ( 1986). https://doi.org/10.1039/f19868201597
|
47. |
L. Soltane, F. Sediri, Hydrothermal synthesis and characterization of mesoporous rod-like hybrid organic-inorganic nanocrystalline based vanadium oxide. Ceram. Int. 40, 1531-1538 ( 2014). https://doi.org/10.1016/j.ceramint.2013.07.039
|